FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
- URL: http://arxiv.org/abs/2507.23154v1
- Date: Wed, 30 Jul 2025 23:04:16 GMT
- Title: FuseTen: A Generative Model for Daily 10 m Land Surface Temperature Estimation from Spatio-Temporal Satellite Observations
- Authors: Sofiane Bouaziz, Adel Hafiane, Raphael Canals, Rachid Nedjai,
- Abstract summary: Urban heatwaves, droughts, and land heatwaves are pressing and growing challenges in the context of climate change.<n>One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST)<n>We propose FuseTen to produce daily LST observations at a fine 10 m spatial resolution by fusing-basedtemporal observations from Landsat 8, and Terra MODIS.
- Score: 3.344876133162209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Urban heatwaves, droughts, and land degradation are pressing and growing challenges in the context of climate change. A valuable approach to studying them requires accurate spatio-temporal information on land surface conditions. One of the most important variables for assessing and understanding these phenomena is Land Surface Temperature (LST), which is derived from satellites and provides essential information about the thermal state of the Earth's surface. However, satellite platforms inherently face a trade-off between spatial and temporal resolutions. To bridge this gap, we propose FuseTen, a novel generative framework that produces daily LST observations at a fine 10 m spatial resolution by fusing spatio-temporal observations derived from Sentinel-2, Landsat 8, and Terra MODIS. FuseTen employs a generative architecture trained using an averaging-based supervision strategy grounded in physical principles. It incorporates attention and normalization modules within the fusion process and uses a PatchGAN discriminator to enforce realism. Experiments across multiple dates show that FuseTen outperforms linear baselines, with an average 32.06% improvement in quantitative metrics and 31.42% in visual fidelity. To the best of our knowledge, this is the first non-linear method to generate daily LST estimates at such fine spatial resolution.
Related papers
- ReconMOST: Multi-Layer Sea Temperature Reconstruction with Observations-Guided Diffusion [48.540756751934836]
ReconMOST is a data-driven guided diffusion model framework for multi-layer sea temperature reconstruction.<n>Our method extends ML-based SST reconstruction to a global, multi-layer setting, handling over 92.5% missing data.
arXiv Detail & Related papers (2025-06-12T06:27:22Z) - Satellite Observations Guided Diffusion Model for Accurate Meteorological States at Arbitrary Resolution [48.34051432429767]
We propose a conditional diffusion model pre-trained on ERA5 reanalysis data with satellite observations (GridSat) as conditions.<n>During the training process, we propose to fuse the information from GridSat satellite observations into ERA5 maps via the attention mechanism.<n>In the sampling, we employed optimizable convolutional kernels to simulate the upscale process.
arXiv Detail & Related papers (2025-02-09T02:05:33Z) - Deep Learning for Spatio-Temporal Fusion in Land Surface Temperature Estimation: A Comprehensive Survey, Experimental Analysis, and Future Trends [3.344876133162209]
Land Surface Temperature (LST) plays a critical role in understanding key environmental processes.<n>Satellite sensors often face a trade-off between spatial and temporal resolutions.<n>Spatio-Temporal Fusion (STF) has emerged as a powerful method to integrate two satellite data sources.
arXiv Detail & Related papers (2024-12-21T13:53:15Z) - Urban Air Temperature Prediction using Conditional Diffusion Models [26.577558935382477]
Urbanization as a global trend has led to many environmental challenges, including the urban heat island (UHI) effect.<n>Air temperature at 2m above the surface is a key indicator of the UHI effect.<n>How land use land cover (LULC) affects $T_a$ is a critical research question which requires high-resolution (HR) $T_a$ data at neighborhood scale.<n>We propose a novel method to predict HR $T_a$ at 100m ground separation distance (gsd) using land surface temperature (LST) and other LULC related features which can be easily obtained from
arXiv Detail & Related papers (2024-12-18T04:56:29Z) - MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Multi-Modal Learning-based Reconstruction of High-Resolution Spatial
Wind Speed Fields [46.72819846541652]
We propose a framework based on Vari Data Assimilation and Deep Learning concepts.
This framework is applied to recover rich-in-time, high-resolution information on sea surface wind speed.
arXiv Detail & Related papers (2023-12-14T13:40:39Z) - High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery [0.14061979259370275]
We incorporate NASA's Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model.
We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies.
arXiv Detail & Related papers (2023-11-12T23:39:21Z) - Embedding Earth: Self-supervised contrastive pre-training for dense land
cover classification [61.44538721707377]
We present Embedding Earth a self-supervised contrastive pre-training method for leveraging the large availability of satellite imagery.
We observe significant improvements up to 25% absolute mIoU when pre-trained with our proposed method.
We find that learnt features can generalize between disparate regions opening up the possibility of using the proposed pre-training scheme.
arXiv Detail & Related papers (2022-03-11T16:14:14Z) - Generating gapless land surface temperature with a high spatio-temporal
resolution by fusing multi-source satellite-observed and model-simulated data [7.166180462786921]
We present an integrated temperature fusion framework for satellite-observed and LSM-simulated LST data to map gapless LST at a 60-m spatial resolution and half-hourly temporal resolution.
Evaluations were implemented in an urban-dominated region (the city of Wuhan in China) and a natural-dominated region (the Heihe River Basin in China)
arXiv Detail & Related papers (2021-11-29T02:28:47Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z) - EarthNet2021: A novel large-scale dataset and challenge for forecasting
localized climate impacts [12.795776149170978]
Large Earth observation datasets now enable us to create machine learning models capable of translating coarse weather information into high-resolution Earth surface forecasts.
We define high-resolution Earth surface forecasting as video prediction of satellite imagery conditional on mesoscale weather forecasts.
We introduce EarthNet 2021, a new curated dataset containing target-temporal Sentinel 2 satellite imagery at 20 m resolution, matched with high-resolution topography and mesoscale (1.28 km) weather variables.
arXiv Detail & Related papers (2020-12-11T11:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.