High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery
- URL: http://arxiv.org/abs/2312.06845v1
- Date: Sun, 12 Nov 2023 23:39:21 GMT
- Title: High-Cadence Thermospheric Density Estimation enabled by Machine
Learning on Solar Imagery
- Authors: Shreshth A. Malik, James Walsh, Giacomo Acciarini, Thomas E. Berger,
At{\i}l{\i}m G\"une\c{s} Baydin
- Abstract summary: We incorporate NASA's Solar Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a neural thermospheric density model.
We demonstrate that EUV imagery can enable predictions with much higher temporal resolution and replace ground-based proxies.
- Score: 0.14061979259370275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of thermospheric density is critical for precise modeling
of satellite drag forces in low Earth orbit (LEO). Improving this estimation is
crucial to tasks such as state estimation, collision avoidance, and re-entry
calculations. The largest source of uncertainty in determining thermospheric
density is modeling the effects of space weather driven by solar and
geomagnetic activity. Current operational models rely on ground-based proxy
indices which imperfectly correlate with the complexity of solar outputs and
geomagnetic responses. In this work, we directly incorporate NASA's Solar
Dynamics Observatory (SDO) extreme ultraviolet (EUV) spectral images into a
neural thermospheric density model to determine whether the predictive
performance of the model is increased by using space-based EUV imagery data
instead of, or in addition to, the ground-based proxy indices. We demonstrate
that EUV imagery can enable predictions with much higher temporal resolution
and replace ground-based proxies while significantly increasing performance
relative to current operational models. Our method paves the way for
assimilating EUV image data into operational thermospheric density forecasting
models for use in LEO satellite navigation processes.
Related papers
- MambaDS: Near-Surface Meteorological Field Downscaling with Topography Constrained Selective State Space Modeling [68.69647625472464]
Downscaling, a crucial task in meteorological forecasting, enables the reconstruction of high-resolution meteorological states for target regions.
Previous downscaling methods lacked tailored designs for meteorology and encountered structural limitations.
We propose a novel model called MambaDS, which enhances the utilization of multivariable correlations and topography information.
arXiv Detail & Related papers (2024-08-20T13:45:49Z) - Inverse Deep Learning Ray Tracing for Heliostat Surface Prediction [3.9888918233632746]
We introduce inverse Deep Learning Ray Tracing (iDLR) to predict heliostat surfaces based solely on target images obtained during heliostat calibration.
Our simulation-based investigation demonstrates that sufficient information regarding the heliostat surface is retained in the flux density distribution of a single heliostat.
Our findings reveal that iDLR has significant potential to enhance CSP plant operations, potentially increasing the overall efficiency and energy output of the power plants.
arXiv Detail & Related papers (2024-08-20T12:51:35Z) - Advances in Land Surface Model-based Forecasting: A comparative study of LSTM, Gradient Boosting, and Feedforward Neural Network Models as prognostic state emulators [4.852378895360775]
We evaluate the efficiency of three surrogate models in speeding up experimental research by simulating land surface processes.
Our findings indicate that while all models on average demonstrate high accuracy over the forecast period, the LSTM network excels in continental long-range predictions when carefully tuned.
arXiv Detail & Related papers (2024-07-23T13:26:05Z) - Solar synthetic imaging: Introducing denoising diffusion probabilistic models on SDO/AIA data [0.0]
This study proposes using generative deep learning models, specifically a Denoising Diffusion Probabilistic Model (DDPM), to create synthetic images of solar phenomena.
By employing a dataset from the AIA instrument aboard the SDO spacecraft, we aim to address the data scarcity issue.
The DDPM's performance is evaluated using cluster metrics, Frechet Inception Distance (FID), and F1-score, showcasing promising results in generating realistic solar imagery.
arXiv Detail & Related papers (2024-04-03T08:18:45Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Reduced Order Probabilistic Emulation for Physics-Based Thermosphere
Models [0.0]
This work aims to employ a probabilistic machine learning (ML) method to create an efficient surrogate for the Thermosphere Ionosphere Electrodynamics Circulation General Model (TIE-GCM)
We show that across the available data, TIE-GCM ROPE has similar error to previous linear approaches while improving storm-time modeling.
We also conduct a satellite propagation study for the significant November 2003 storm which shows that TIE-GCM ROPE can capture the position resulting from TIE-GCM density with 5 km bias.
arXiv Detail & Related papers (2022-11-08T17:36:37Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
Lidar-based object detectors are critical parts of the 3D perception pipeline in autonomous navigation systems such as self-driving cars.
They are sensitive to adverse weather conditions such as rain, snow and fog due to reduced signal-to-noise ratio (SNR) and signal-to-background ratio (SBR)
arXiv Detail & Related papers (2021-07-14T21:10:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.