論文の概要: XABPs: Towards eXplainable Autonomous Business Processes
- arxiv url: http://arxiv.org/abs/2507.23269v1
- Date: Thu, 31 Jul 2025 06:10:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.127184
- Title: XABPs: Towards eXplainable Autonomous Business Processes
- Title(参考訳): XABPs: eXplainable Autonomous Business Processsを目指して
- Authors: Peter Fettke, Fabiana Fournier, Lior Limonad, Andreas Metzger, Stefanie Rinderle-Ma, Barbara Weber,
- Abstract要約: 我々は,eXplainable ABP (XABPs) に対して,システムの論理的根拠を明確にすることで懸念に対処することを主張する。
この記事では、XABPに対する体系的なアプローチの概要、フォームの特徴付け、説明可能性の構築、XABPに対する主要なBPM研究課題の特定について説明する。
- 参考スコア(独自算出の注目度): 3.878051644292239
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Autonomous business processes (ABPs), i.e., self-executing workflows leveraging AI/ML, have the potential to improve operational efficiency, reduce errors, lower costs, improve response times, and free human workers for more strategic and creative work. However, ABPs may raise specific concerns including decreased stakeholder trust, difficulties in debugging, hindered accountability, risk of bias, and issues with regulatory compliance. We argue for eXplainable ABPs (XABPs) to address these concerns by enabling systems to articulate their rationale. The paper outlines a systematic approach to XABPs, characterizing their forms, structuring explainability, and identifying key BPM research challenges towards XABPs.
- Abstract(参考訳): AI/MLを活用したセルフ実行ワークフローである自動ビジネスプロセス(ABP)は、運用効率の向上、エラーの削減、コスト削減、応答時間の改善、戦略的かつ創造的な作業のための人的労働者の解放といった可能性を秘めている。
しかし、APPは株主信頼の低下、デバッグの困難、説明責任の障害、バイアスのリスク、規制コンプライアンスの問題など、特定の懸念を提起する可能性がある。
我々は,eXplainable ABPs (XABPs) がこれらの問題に対処する上で,システムによる理論的根拠の明確化を可能にすることを主張する。
この記事では、XABPに対する体系的なアプローチの概要、フォームの特徴付け、説明可能性の構築、XABPに対する主要なBPM研究課題の特定について説明する。
関連論文リスト
- Hierarchical Budget Policy Optimization for Adaptive Reasoning [49.621779447691665]
階層的予算政策最適化(Hierarchical Budget Policy Optimization, HBPO)は、モデルが問題固有の推論深度を犠牲にすることなく学習できる強化学習フレームワークである。
HBPOは効率指向トレーニングにおける探索空間崩壊の課題に対処し、長い出力長の罰則を体系的に長い推論経路から遠ざける。
大規模な実験により、HBPOは平均トークン使用量を最大60.6%削減し、4つの推論ベンチマークで精度を3.14%改善した。
論文 参考訳(メタデータ) (2025-07-21T17:52:34Z) - Policy Frameworks for Transparent Chain-of-Thought Reasoning in Large Language Models [1.0088912103548195]
CoT(Chain-of-Thought)推論は、複雑な問題をステップバイステップのソリューションに分解することで、大きな言語モデル(LLM)を強化する。
現在のCoT開示ポリシは、可視性、APIアクセス、価格戦略など、さまざまなモデルで大きく異なり、統一されたポリシフレームワークが欠如している。
学術,ビジネス,一般ユーザ向けにCoTの可用性を調整し,透明性,説明責任,セキュリティのバランスをとるタイレッドアクセスポリシフレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-14T19:54:18Z) - Self-Regulation and Requesting Interventions [63.5863047447313]
介入要求のための"helper"ポリシーをトレーニングするオフラインフレームワークを提案する。
PRMによる最適介入タイミングを判定し,これらのラベル付き軌道上でヘルパーモデルを訓練する。
このオフラインアプローチは、トレーニング中のコストのかかる介入コールを大幅に削減する。
論文 参考訳(メタデータ) (2025-02-07T00:06:17Z) - Agentic AI: Autonomy, Accountability, and the Algorithmic Society [0.2209921757303168]
エージェント人工知能(AI)は、自律的に長期的な目標を追求し、意思決定を行い、複雑なマルチターンを実行することができる。
この指導的役割から積極的執行課題への移行は、法的、経済的、創造的な枠組みを確立した。
我々は,創造性と知的財産,法的・倫理的考察,競争効果の3つの分野における課題を探求する。
論文 参考訳(メタデータ) (2025-02-01T03:14:59Z) - ABI Approach: Automatic Bias Identification in Decision-Making Under Risk based in an Ontology of Behavioral Economics [46.57327530703435]
損失回避のようなバイアスによって引き起こされる損失に対する優先順位を求めるリスクは、課題を引き起こし、深刻なネガティブな結果をもたらす可能性がある。
本研究は,リスクサーチの選好を自動的に識別し,説明することにより,組織意思決定者を支援する新しいソリューションであるABIアプローチを紹介する。
論文 参考訳(メタデータ) (2024-05-22T23:53:46Z) - Accountability in Offline Reinforcement Learning: Explaining Decisions
with a Corpus of Examples [70.84093873437425]
本稿では、オフラインデータセットを決定コーパスとして利用するAOC(Accountable Offline Controller)を紹介する。
AOCはローデータシナリオで効果的に動作し、厳密なオフラインの模倣設定まで拡張でき、保存性と適応性の両方の品質を示す。
シミュレーションおよび実世界の医療シナリオにおいて、AOCのパフォーマンスを評価し、説明責任を維持しながら高いレベルのパフォーマンスでオフライン制御タスクを管理する能力を強調した。
論文 参考訳(メタデータ) (2023-10-11T17:20:32Z) - Algorithmic Fairness in Business Analytics: Directions for Research and
Practice [24.309795052068388]
本稿では,アルゴリズムフェアネスの先見的,BAに着目したレビューを行う。
まず、バイアスの源泉と測定方法、およびバイアス緩和アルゴリズムに関する最先端の研究について概説する。
次に、ユーティリティ・フェアネスの関係について詳細な議論を行い、これらの2つの構成要素間のトレードオフの頻繁な仮定は、しばしば間違いまたは近視的であることを強調した。
論文 参考訳(メタデータ) (2022-07-22T10:21:38Z) - The Conflict Between Explainable and Accountable Decision-Making
Algorithms [10.64167691614925]
意思決定アルゴリズムは、誰が医療プログラムに登録され、雇用されるべきかといった重要な決定に使われています。
XAIイニシアチブは、法的要件に準拠し、信頼を促進し、説明責任を維持するために、アルゴリズムを説明可能にすることを目的としている。
本稿では,自律型AIシステムによって引き起こされる責任問題の解決に,説明可能性がどの程度役立つのかを問う。
論文 参考訳(メタデータ) (2022-05-11T07:19:28Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。