Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2
- URL: http://arxiv.org/abs/2507.23272v1
- Date: Thu, 31 Jul 2025 06:15:44 GMT
- Title: Towards Affordable Tumor Segmentation and Visualization for 3D Breast MRI Using SAM2
- Authors: Solha Kang, Eugene Kim, Joris Vankerschaver, Utku Ozbulak,
- Abstract summary: We investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI.<n>We propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward.<n>Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision.
- Score: 1.31995111981289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Breast MRI provides high-resolution volumetric imaging critical for tumor assessment and treatment planning, yet manual interpretation of 3D scans remains labor-intensive and subjective. While AI-powered tools hold promise for accelerating medical image analysis, adoption of commercial medical AI products remains limited in low- and middle-income countries due to high license costs, proprietary software, and infrastructure demands. In this work, we investigate whether the Segment Anything Model 2 (SAM2) can be adapted for low-cost, minimal-input 3D tumor segmentation in breast MRI. Using a single bounding box annotation on one slice, we propagate segmentation predictions across the 3D volume using three different slice-wise tracking strategies: top-to-bottom, bottom-to-top, and center-outward. We evaluate these strategies across a large cohort of patients and find that center-outward propagation yields the most consistent and accurate segmentations. Despite being a zero-shot model not trained for volumetric medical data, SAM2 achieves strong segmentation performance under minimal supervision. We further analyze how segmentation performance relates to tumor size, location, and shape, identifying key failure modes. Our results suggest that general-purpose foundation models such as SAM2 can support 3D medical image analysis with minimal supervision, offering an accessible and affordable alternative for resource-constrained settings.
Related papers
- Is Long Range Sequential Modeling Necessary For Colorectal Tumor Segmentation? [3.4031606383293154]
Long-range volumetric sequence modeling mechanisms, such as Transformers and Mamba, have gained attention for their capacity to achieve high accuracy in 3D medical image segmentation.<n>We evaluate the effectiveness of these global token modeling techniques by pitting them against our proposed MambaOutUNet.<n>Our findings suggest that robust local token interactions can outperform long-range modeling techniques in cases where the region of interest is small and anatomically complex.
arXiv Detail & Related papers (2025-02-10T23:24:01Z) - Assessing Foundational Medical 'Segment Anything' (Med-SAM1, Med-SAM2) Deep Learning Models for Left Atrial Segmentation in 3D LGE MRI [0.0]
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with heart failure and stroke.
Deep learning models, such as the Segment Anything Model (SAM), pre-trained on diverse datasets, have demonstrated promise in generic segmentation tasks.
Despite the potential of MedSAM model, it has not yet been evaluated for the complex task of LA segmentation in 3D LGE-MRI.
arXiv Detail & Related papers (2024-11-08T20:49:54Z) - Novel adaptation of video segmentation to 3D MRI: efficient zero-shot knee segmentation with SAM2 [1.6237741047782823]
We introduce a method for zero-shot, single-prompt segmentation of 3D knee MRI by adapting Segment Anything Model 2.
By treating slices from 3D medical volumes as individual video frames, we leverage SAM2's advanced capabilities to generate motion- and spatially-aware predictions.
We demonstrate that SAM2 can efficiently perform segmentation tasks in a zero-shot manner with no additional training or fine-tuning.
arXiv Detail & Related papers (2024-08-08T21:39:15Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Enhancing Weakly Supervised 3D Medical Image Segmentation through Probabilistic-aware Learning [47.700298779672366]
3D medical image segmentation is a challenging task with crucial implications for disease diagnosis and treatment planning.<n>Recent advances in deep learning have significantly enhanced fully supervised medical image segmentation.<n>We propose a novel probabilistic-aware weakly supervised learning pipeline, specifically designed for 3D medical imaging.
arXiv Detail & Related papers (2024-03-05T00:46:53Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
We introduce a modality-agnostic SAM adaptation framework, named as MA-SAM.
Our method roots in the parameter-efficient fine-tuning strategy to update only a small portion of weight increments.
By injecting a series of 3D adapters into the transformer blocks of the image encoder, our method enables the pre-trained 2D backbone to extract third-dimensional information from input data.
arXiv Detail & Related papers (2023-09-16T02:41:53Z) - SAM3D: Segment Anything Model in Volumetric Medical Images [11.764867415789901]
We introduce SAM3D, an innovative adaptation tailored for 3D volumetric medical image analysis.
Unlike current SAM-based methods that segment volumetric data by converting the volume into separate 2D slices for individual analysis, our SAM3D model processes the entire 3D volume image in a unified approach.
arXiv Detail & Related papers (2023-09-07T06:05:28Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - Volumetric Medical Image Segmentation: A 3D Deep Coarse-to-fine
Framework and Its Adversarial Examples [74.92488215859991]
We propose a novel 3D-based coarse-to-fine framework to efficiently tackle these challenges.
The proposed 3D-based framework outperforms their 2D counterparts by a large margin since it can leverage the rich spatial information along all three axes.
We conduct experiments on three datasets, the NIH pancreas dataset, the JHMI pancreas dataset and the JHMI pathological cyst dataset.
arXiv Detail & Related papers (2020-10-29T15:39:19Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
We propose a method to model 3D MR brain volumes distribution by combining a 2D slice VAE with a Gaussian model that captures the relationships between slices.
We also introduce a novel evaluation method for generated volumes that quantifies how well their segmentations match those of true brain anatomy.
arXiv Detail & Related papers (2020-07-09T13:23:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.