Is Long Range Sequential Modeling Necessary For Colorectal Tumor Segmentation?
- URL: http://arxiv.org/abs/2502.07120v1
- Date: Mon, 10 Feb 2025 23:24:01 GMT
- Title: Is Long Range Sequential Modeling Necessary For Colorectal Tumor Segmentation?
- Authors: Abhishek Srivastava, Koushik Biswas, Gorkem Durak, Gulsah Ozden, Mustafa Adli, Ulas Bagci,
- Abstract summary: Long-range volumetric sequence modeling mechanisms, such as Transformers and Mamba, have gained attention for their capacity to achieve high accuracy in 3D medical image segmentation.
We evaluate the effectiveness of these global token modeling techniques by pitting them against our proposed MambaOutUNet.
Our findings suggest that robust local token interactions can outperform long-range modeling techniques in cases where the region of interest is small and anatomically complex.
- Score: 3.4031606383293154
- License:
- Abstract: Segmentation of colorectal cancer (CRC) tumors in 3D medical imaging is both complex and clinically critical, providing vital support for effective radiation therapy planning and survival outcome assessment. Recently, 3D volumetric segmentation architectures incorporating long-range sequence modeling mechanisms, such as Transformers and Mamba, have gained attention for their capacity to achieve high accuracy in 3D medical image segmentation. In this work, we evaluate the effectiveness of these global token modeling techniques by pitting them against our proposed MambaOutUNet within the context of our newly introduced colorectal tumor segmentation dataset (CTS-204). Our findings suggest that robust local token interactions can outperform long-range modeling techniques in cases where the region of interest is small and anatomically complex, proposing a potential shift in 3D tumor segmentation research.
Related papers
- Enhanced MRI Representation via Cross-series Masking [48.09478307927716]
Cross-Series Masking (CSM) Strategy for effectively learning MRI representation in a self-supervised manner.
Method achieves state-of-the-art performance on both public and in-house datasets.
arXiv Detail & Related papers (2024-12-10T10:32:09Z) - 3D Graph Attention Networks for High Fidelity Pediatric Glioma Segmentation [0.0]
This study presents a novel 3D UNet architecture with a spatial attention mechanism tailored for automated segmentation of pediatric gliomas.
Using the BraTS pediatric glioma dataset with multiparametric MRI data, the proposed model captures multi-scale features and selectively attends to tumor relevant regions.
The model's performance is quantitatively evaluated using the Dice similarity coefficient and HD95, demonstrating improved delineation of complex glioma structured.
arXiv Detail & Related papers (2024-12-09T18:36:36Z) - Towards Synergistic Deep Learning Models for Volumetric Cirrhotic Liver Segmentation in MRIs [1.5228650878164722]
Liver cirrhosis, a leading cause of global mortality, requires precise segmentation of ROIs for effective disease monitoring and treatment planning.
Existing segmentation models often fail to capture complex feature interactions and generalize across diverse datasets.
We propose a novel synergistic theory that leverages complementary latent spaces for enhanced feature interaction modeling.
arXiv Detail & Related papers (2024-08-08T14:41:32Z) - Hybrid Multihead Attentive Unet-3D for Brain Tumor Segmentation [0.0]
Brain tumor segmentation is a critical task in medical image analysis, aiding in the diagnosis and treatment planning of brain tumor patients.
Various deep learning-based techniques have made significant progress in this field, however, they still face limitations in terms of accuracy due to the complex and variable nature of brain tumor morphology.
We propose a novel Hybrid Multihead Attentive U-Net architecture, to address the challenges in accurate brain tumor segmentation.
arXiv Detail & Related papers (2024-05-22T02:46:26Z) - Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Mask-Enhanced Segment Anything Model for Tumor Lesion Semantic Segmentation [48.107348956719775]
We introduce Mask-Enhanced SAM (M-SAM), an innovative architecture tailored for 3D tumor lesion segmentation.
We propose a novel Mask-Enhanced Adapter (MEA) within M-SAM that enriches the semantic information of medical images with positional data from coarse segmentation masks.
Our M-SAM achieves high segmentation accuracy and also exhibits robust generalization.
arXiv Detail & Related papers (2024-03-09T13:37:02Z) - Segmentation-based Assessment of Tumor-Vessel Involvement for Surgical
Resectability Prediction of Pancreatic Ductal Adenocarcinoma [1.880228463170355]
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options.
This research proposes a workflow and deep learning-based segmentation models to automatically assess tumor-vessel involvement.
arXiv Detail & Related papers (2023-10-01T10:39:38Z) - 3DSAM-adapter: Holistic adaptation of SAM from 2D to 3D for promptable tumor segmentation [52.699139151447945]
We propose a novel adaptation method for transferring the segment anything model (SAM) from 2D to 3D for promptable medical image segmentation.
Our model can outperform domain state-of-the-art medical image segmentation models on 3 out of 4 tasks, specifically by 8.25%, 29.87%, and 10.11% for kidney tumor, pancreas tumor, colon cancer segmentation, and achieve similar performance for liver tumor segmentation.
arXiv Detail & Related papers (2023-06-23T12:09:52Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
We propose a novel deep learning architecture called Small Tumor-Aware Network (STAN) to improve the performance of segmenting tumors with different size.
The proposed approach outperformed the state-of-the-art approaches in segmenting small breast tumors.
arXiv Detail & Related papers (2020-02-03T22:25:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.