Training-free Geometric Image Editing on Diffusion Models
- URL: http://arxiv.org/abs/2507.23300v2
- Date: Fri, 01 Aug 2025 11:18:42 GMT
- Title: Training-free Geometric Image Editing on Diffusion Models
- Authors: Hanshen Zhu, Zhen Zhu, Kaile Zhang, Yiming Gong, Yuliang Liu, Xiang Bai,
- Abstract summary: We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped.<n>We propose a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement.<n>Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine.
- Score: 53.38549950608886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the task of geometric image editing, where an object within an image is repositioned, reoriented, or reshaped while preserving overall scene coherence. Previous diffusion-based editing methods often attempt to handle all relevant subtasks in a single step, proving difficult when transformations become large or structurally complex. We address this by proposing a decoupled pipeline that separates object transformation, source region inpainting, and target region refinement. Both inpainting and refinement are implemented using a training-free diffusion approach, FreeFine. In experiments on our new GeoBench benchmark, which contains both 2D and 3D editing scenarios, FreeFine outperforms state-of-the-art alternatives in image fidelity, and edit precision, especially under demanding transformations. Code and benchmark are available at: https://github.com/CIawevy/FreeFine
Related papers
- InverseMeetInsert: Robust Real Image Editing via Geometric Accumulation Inversion in Guided Diffusion Models [20.90990477016161]
We introduce Geometry-Inverse-Meet-Pixel-Insert, short for GEO, an exceptionally versatile image editing technique.
Our approach seamlessly integrates text prompts and image prompts to yield diverse and precise editing outcomes.
arXiv Detail & Related papers (2024-09-18T06:43:40Z) - GeoDiffuser: Geometry-Based Image Editing with Diffusion Models [7.7669649283012]
We present GeoDiffuser, a zero-shot optimization-based method that unifies 2D and 3D image-based object editing capabilities into a single method.<n>We show that these transformations can be directly incorporated into the attention layers in diffusion models to implicitly perform editing operations.<n>GeoDiffuser can perform common 2D and 3D edits like object translation, 3D rotation, and removal.
arXiv Detail & Related papers (2024-04-22T17:58:36Z) - Move Anything with Layered Scene Diffusion [77.45870343845492]
We propose SceneDiffusion to optimize a layered scene representation during the diffusion sampling process.
Our key insight is that spatial disentanglement can be obtained by jointly denoising scene renderings at different spatial layouts.
Our generated scenes support a wide range of spatial editing operations, including moving, resizing, cloning, and layer-wise appearance editing operations.
arXiv Detail & Related papers (2024-04-10T17:28:16Z) - Eta Inversion: Designing an Optimal Eta Function for Diffusion-based Real Image Editing [2.5602836891933074]
A commonly adopted strategy for editing real images involves inverting the diffusion process to obtain a noisy representation of the original image.
Current methods for diffusion inversion often struggle to produce edits that are both faithful to the specified text prompt and closely resemble the source image.
We introduce a novel and adaptable diffusion inversion technique for real image editing, which is grounded in a theoretical analysis of the role of $eta$ in the DDIM sampling equation for enhanced editability.
arXiv Detail & Related papers (2024-03-14T15:07:36Z) - DiffEditor: Boosting Accuracy and Flexibility on Diffusion-based Image
Editing [66.43179841884098]
Large-scale Text-to-Image (T2I) diffusion models have revolutionized image generation over the last few years.
We propose DiffEditor to rectify two weaknesses in existing diffusion-based image editing.
Our method can efficiently achieve state-of-the-art performance on various fine-grained image editing tasks.
arXiv Detail & Related papers (2024-02-04T18:50:29Z) - Plasticine3D: 3D Non-Rigid Editing with Text Guidance by Multi-View Embedding Optimization [21.8454418337306]
We propose Plasticine3D, a novel text-guided controlled 3D editing pipeline that can perform 3D non-rigid editing.
Our work divides the editing process into a geometry editing stage and a texture editing stage to achieve separate control of structure and appearance.
For the purpose of fine-grained control, we propose Embedding-Fusion (EF) to blend the original characteristics with the editing objectives in the embedding space.
arXiv Detail & Related papers (2023-12-15T09:01:54Z) - StyleDiffusion: Prompt-Embedding Inversion for Text-Based Editing [115.49488548588305]
A significant research effort is focused on exploiting the amazing capacities of pretrained diffusion models for the editing of images.<n>They either finetune the model, or invert the image in the latent space of the pretrained model.<n>They suffer from two problems: Unsatisfying results for selected regions and unexpected changes in non-selected regions.
arXiv Detail & Related papers (2023-03-28T00:16:45Z) - Pix2Video: Video Editing using Image Diffusion [43.07444438561277]
We investigate how to use pre-trained image models for text-guided video editing.
Our method works in two simple steps: first, we use a pre-trained structure-guided (e.g., depth) image diffusion model to perform text-guided edits on an anchor frame.
We demonstrate that realistic text-guided video edits are possible, without any compute-intensive preprocessing or video-specific finetuning.
arXiv Detail & Related papers (2023-03-22T16:36:10Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - GAN Inversion for Out-of-Range Images with Geometric Transformations [22.914126221037222]
We propose BDInvert, a novel GAN inversion approach to semantic editing of out-of-range images.
Our experiments show that BDInvert effectively supports semantic editing of out-of-range images with geometric transformations.
arXiv Detail & Related papers (2021-08-20T04:38:40Z) - Controllable Person Image Synthesis with Spatially-Adaptive Warped
Normalization [72.65828901909708]
Controllable person image generation aims to produce realistic human images with desirable attributes.
We introduce a novel Spatially-Adaptive Warped Normalization (SAWN), which integrates a learned flow-field to warp modulation parameters.
We propose a novel self-training part replacement strategy to refine the pretrained model for the texture-transfer task.
arXiv Detail & Related papers (2021-05-31T07:07:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.