What's Taboo for You? - An Empirical Evaluation of LLMs Behavior Toward Sensitive Content
- URL: http://arxiv.org/abs/2507.23319v1
- Date: Thu, 31 Jul 2025 08:02:04 GMT
- Title: What's Taboo for You? - An Empirical Evaluation of LLMs Behavior Toward Sensitive Content
- Authors: Alfio Ferrara, Sergio Picascia, Laura Pinnavaia, Vojimir Ranitovic, Elisabetta Rocchetti, Alice Tuveri,
- Abstract summary: This study empirically analyzes the implicit moderation behavior of GPT-4o-mini when paraphrasing sensitive content.<n>Our experiments indicate that GPT-4o-mini systematically moderates content toward less sensitive classes, with substantial reductions in derogatory and taboo language.
- Score: 1.6492989697868894
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Proprietary Large Language Models (LLMs) have shown tendencies toward politeness, formality, and implicit content moderation. While previous research has primarily focused on explicitly training models to moderate and detoxify sensitive content, there has been limited exploration of whether LLMs implicitly sanitize language without explicit instructions. This study empirically analyzes the implicit moderation behavior of GPT-4o-mini when paraphrasing sensitive content and evaluates the extent of sensitivity shifts. Our experiments indicate that GPT-4o-mini systematically moderates content toward less sensitive classes, with substantial reductions in derogatory and taboo language. Also, we evaluate the zero-shot capabilities of LLMs in classifying sentence sensitivity, comparing their performances against traditional methods.
Related papers
- Probing Association Biases in LLM Moderation Over-Sensitivity [42.191744175730726]
Large Language Models are widely used for content moderation but often misclassify benign comments as toxic.<n>We introduce Topic Association Analysis, a semantic-level approach to quantify how LLMs associate certain topics with toxicity.<n>More advanced models (e.g., GPT-4 Turbo) demonstrate stronger topic stereotype despite lower overall false positive rates.
arXiv Detail & Related papers (2025-05-29T18:07:48Z) - Beyond Keywords: Evaluating Large Language Model Classification of Nuanced Ableism [2.0435202333125977]
Large language models (LLMs) are increasingly used in decision-making tasks like r'esum'e screening and content moderation.<n>We evaluate the ability of four LLMs to identify nuanced ableism directed at autistic individuals.<n>Our results reveal that LLMs can identify autism-related language but often miss harmful or offensive connotations.
arXiv Detail & Related papers (2025-05-26T20:01:44Z) - Pragmatic Inference Chain (PIC) Improving LLMs' Reasoning of Authentic Implicit Toxic Language [10.295731340480417]
Pragmatic Inference Chain (PIC) is a new prompting method drawn on interdisciplinary findings from cognitive science and linguistics.<n>It significantly improves the success rate of GPT-4o, Llama-3.1-70B-Instruct, and DeepSeek-v2.5 in identifying implicit toxic language.
arXiv Detail & Related papers (2025-03-03T13:51:05Z) - Estimating Commonsense Plausibility through Semantic Shifts [66.06254418551737]
We propose ComPaSS, a novel discriminative framework that quantifies commonsense plausibility by measuring semantic shifts.<n> Evaluations on two types of fine-grained commonsense plausibility estimation tasks show that ComPaSS consistently outperforms baselines.
arXiv Detail & Related papers (2025-02-19T06:31:06Z) - Hate Personified: Investigating the role of LLMs in content moderation [64.26243779985393]
For subjective tasks such as hate detection, where people perceive hate differently, the Large Language Model's (LLM) ability to represent diverse groups is unclear.
By including additional context in prompts, we analyze LLM's sensitivity to geographical priming, persona attributes, and numerical information to assess how well the needs of various groups are reflected.
arXiv Detail & Related papers (2024-10-03T16:43:17Z) - Categorical Syllogisms Revisited: A Review of the Logical Reasoning Abilities of LLMs for Analyzing Categorical Syllogism [62.571419297164645]
This paper provides a systematic overview of prior works on the logical reasoning ability of large language models for analyzing categorical syllogisms.<n>We first investigate all the possible variations for the categorical syllogisms from a purely logical perspective.<n>We then examine the underlying configurations (i.e., mood and figure) tested by the existing datasets.
arXiv Detail & Related papers (2024-06-26T21:17:20Z) - Don't Go To Extremes: Revealing the Excessive Sensitivity and Calibration Limitations of LLMs in Implicit Hate Speech Detection [29.138463029748547]
This paper explores the capability of Large Language Models to detect implicit hate speech and express confidence in their responses.
Our findings highlight that LLMs exhibit two extremes: (1) LLMs display excessive sensitivity towards groups or topics that may cause fairness issues, resulting in misclassifying benign statements as hate speech.
arXiv Detail & Related papers (2024-02-18T00:04:40Z) - Uncertainty Quantification for In-Context Learning of Large Language Models [52.891205009620364]
In-context learning has emerged as a groundbreaking ability of Large Language Models (LLMs)
We propose a novel formulation and corresponding estimation method to quantify both types of uncertainties.
The proposed method offers an unsupervised way to understand the prediction of in-context learning in a plug-and-play fashion.
arXiv Detail & Related papers (2024-02-15T18:46:24Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
Large Language Models (LLMs) have sparked intense debate regarding the prevalence of bias in these models and its mitigation.
We propose a prompt-based method for the extraction of confounding and mediating attributes which contribute to the decision process.
We find that the observed disparate treatment can at least in part be attributed to confounding and mitigating attributes and model misalignment.
arXiv Detail & Related papers (2023-11-15T00:02:25Z) - How are Prompts Different in Terms of Sensitivity? [50.67313477651395]
We present a comprehensive prompt analysis based on the sensitivity of a function.
We use gradient-based saliency scores to empirically demonstrate how different prompts affect the relevance of input tokens to the output.
We introduce sensitivity-aware decoding which incorporates sensitivity estimation as a penalty term in the standard greedy decoding.
arXiv Detail & Related papers (2023-11-13T10:52:01Z) - Simple Linguistic Inferences of Large Language Models (LLMs): Blind Spots and Blinds [59.71218039095155]
We evaluate language understanding capacities on simple inference tasks that most humans find trivial.
We target (i) grammatically-specified entailments, (ii) premises with evidential adverbs of uncertainty, and (iii) monotonicity entailments.
The models exhibit moderate to low performance on these evaluation sets.
arXiv Detail & Related papers (2023-05-24T06:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.