Optimal Transport Learning: Balancing Value Optimization and Fairness in Individualized Treatment Rules
- URL: http://arxiv.org/abs/2507.23349v1
- Date: Thu, 31 Jul 2025 08:56:03 GMT
- Title: Optimal Transport Learning: Balancing Value Optimization and Fairness in Individualized Treatment Rules
- Authors: Wenhai Cui, Xiaoting Ji, Wen Su, Xiaodong Yan, Xingqiu Zhao,
- Abstract summary: We propose a flexible approach based on the optimal transport theory to transform any optimal ITR into a fair ITR.<n>We demonstrate performance of the proposed method through extensive simulation studies and application to the Next 36 entrepreneurial program dataset.
- Score: 7.231498702561808
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Individualized treatment rules (ITRs) have gained significant attention due to their wide-ranging applications in fields such as precision medicine, ridesharing, and advertising recommendations. However, when ITRs are influenced by sensitive attributes such as race, gender, or age, they can lead to outcomes where certain groups are unfairly advantaged or disadvantaged. To address this gap, we propose a flexible approach based on the optimal transport theory, which is capable of transforming any optimal ITR into a fair ITR that ensures demographic parity. Recognizing the potential loss of value under fairness constraints, we introduce an ``improved trade-off ITR," designed to balance value optimization and fairness while accommodating varying levels of fairness through parameter adjustment. To maximize the value of the improved trade-off ITR under specific fairness levels, we propose a smoothed fairness constraint for estimating the adjustable parameter. Additionally, we establish a theoretical upper bound on the value loss for the improved trade-off ITR. We demonstrate performance of the proposed method through extensive simulation studies and application to the Next 36 entrepreneurial program dataset.
Related papers
- FairPOT: Balancing AUC Performance and Fairness with Proportional Optimal Transport [9.47500733579604]
In high-stakes domains such as healthcare, fairness is often evaluated over risk scores rather than binary outcomes.<n>We propose Fair Proportional Optimal Transport (FairPOT), a novel, model-agnostic post-processing framework.<n>We show that FairPOT consistently outperforms existing post-processing techniques in both global and partial AUC scenarios.
arXiv Detail & Related papers (2025-08-05T22:13:08Z) - Implicit Reward as the Bridge: A Unified View of SFT and DPO Connections [65.36449542323277]
We present a unified theoretical framework bridgingSupervised Fine-Tuning (SFT) and preference learning in Large Language Model (LLM) post-training.<n>We propose a simple yet effective learning rate reduction approach that yields significant performance improvements.
arXiv Detail & Related papers (2025-06-15T05:42:29Z) - FedFACT: A Provable Framework for Controllable Group-Fairness Calibration in Federated Learning [13.575259448363557]
We propose a controllable group-fairness calibration framework, named FedFACT.<n>FedFACT identifies the Bayes-optimal classifiers under both global and local fairness constraints.<n>Experiments on multiple datasets demonstrate that FedFACT consistently outperforms baselines in balancing accuracy and global-local fairness.
arXiv Detail & Related papers (2025-06-04T09:39:57Z) - pFedFair: Towards Optimal Group Fairness-Accuracy Trade-off in Heterogeneous Federated Learning [17.879602968559198]
Federated learning algorithms aim to maximize clients' accuracy by training a model on their collective data.<n>Group fairness constraints can be incorporated into the objective function of the FL optimization problem.<n>We show that such an approach would lead to suboptimal classification accuracy in an FL setting with heterogeneous client distributions.
arXiv Detail & Related papers (2025-03-19T06:15:31Z) - Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
We identify the source of misalignment as a form of distributional shift and uncertainty in learning human preferences.<n>To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model.<n>Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines a preference optimization loss and a supervised learning loss.
arXiv Detail & Related papers (2024-05-26T05:38:50Z) - Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Efficient Federated Learning via Local Adaptive Amended Optimizer with
Linear Speedup [90.26270347459915]
We propose a novel momentum-based algorithm via utilizing the global descent locally adaptive.
textitLADA could greatly reduce the communication rounds and achieves higher accuracy than several baselines.
arXiv Detail & Related papers (2023-07-30T14:53:21Z) - Inference-time Stochastic Ranking with Risk Control [19.20938164194589]
Learning to Rank methods are vital in online economies, affecting users and item providers.
We propose a novel method that performs ranking at inference time with guanranteed utility or fairness given pretrained scoring functions.
arXiv Detail & Related papers (2023-06-12T15:44:58Z) - Fair-CDA: Continuous and Directional Augmentation for Group Fairness [48.84385689186208]
We propose a fine-grained data augmentation strategy for imposing fairness constraints.
We show that group fairness can be achieved by regularizing the models on transition paths of sensitive features between groups.
Our proposed method does not assume any data generative model and ensures good generalization for both accuracy and fairness.
arXiv Detail & Related papers (2023-04-01T11:23:00Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
We first theoretically demonstrate the inherent connection between distribution shift, data perturbation, and model weight perturbation.
We then analyze the sufficient conditions to guarantee fairness for the target dataset.
Motivated by these sufficient conditions, we propose robust fairness regularization (RFR)
arXiv Detail & Related papers (2023-03-06T17:19:23Z) - On Tilted Losses in Machine Learning: Theory and Applications [26.87656095874882]
Exponential tilting is a technique commonly used in fields such as statistics, probability, information theory, and optimization.
We study a simple extension to ERM, which uses exponential tilting to flexibly tune the impact of individual losses.
We find that the framework can consistently outperform ERM and deliver competitive performance with state-of-the-art, problem-specific approaches.
arXiv Detail & Related papers (2021-09-13T17:33:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.