論文の概要: Holistic Evaluations of Topic Models
- arxiv url: http://arxiv.org/abs/2507.23364v1
- Date: Thu, 31 Jul 2025 09:20:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.413802
- Title: Holistic Evaluations of Topic Models
- Title(参考訳): トピックモデルの全体的評価
- Authors: Thomas Compton,
- Abstract要約: この記事では、データベースの観点からトピックモデルを評価し、1140 BERTopicモデルの実行から洞察を引き出す。
目標は、モデルパラメータを最適化する際のトレードオフを特定し、これらの発見がトピックモデルの解釈と責任ある使用に何を意味するのかを反映することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic models are gaining increasing commercial and academic interest for their ability to summarize large volumes of unstructured text. As unsupervised machine learning methods, they enable researchers to explore data and help general users understand key themes in large text collections. However, they risk becoming a 'black box', where users input data and accept the output as an accurate summary without scrutiny. This article evaluates topic models from a database perspective, drawing insights from 1140 BERTopic model runs. The goal is to identify trade-offs in optimizing model parameters and to reflect on what these findings mean for the interpretation and responsible use of topic models
- Abstract(参考訳): 大量の構造化されていないテキストを要約する能力のために、トピックモデルは商業的、学術的な関心が高まっている。
教師なしの機械学習手法として、研究者はデータを探索し、大きなテキストコレクションのキーテーマを理解するのに役立つ。
しかし、ユーザはデータを入力し、精査せずに正確な要約として出力を受け入れる「ブラックボックス」になるリスクがある。
この記事では、データベースの観点からトピックモデルを評価し、1140 BERTopicモデルの実行から洞察を引き出す。
目的は、モデルパラメータの最適化におけるトレードオフを特定し、これらの発見がトピックモデルの解釈と責任ある使用に何を意味するのかを反映することである。
関連論文リスト
- topicwizard -- a Modern, Model-agnostic Framework for Topic Model Visualization and Interpretation [0.0]
本稿では,モデルに依存しないトピックモデル解釈のためのフレームワークであるトピックウィザードを紹介する。
トピックモデルによって学習された文書、単語、トピック間の複雑な意味関係を調べるのに役立つ。
論文 参考訳(メタデータ) (2025-05-19T12:19:01Z) - Investigating the Impact of Text Summarization on Topic Modeling [13.581341206178525]
本稿では,事前学習型大言語モデル(LLM)を用いてトピックモデリング性能をさらに向上する手法を提案する。
トピックモデリングへの影響を比較するために、異なる長さの要約を生成するために、ショットプロンプトはほとんど使われない。
提案手法は,従来のモデルと比較して,トピックの多様性とコヒーレンス値に比較して優れている。
論文 参考訳(メタデータ) (2024-09-28T19:45:45Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
ラベル名監視型トピックモデリングのためのアプローチとして,EdTMを提案する。
EdTMは、LM/LLMベースのドキュメントトピック親和性を活用しながら、代入問題としてのトピックモデリングをモデル化する。
論文 参考訳(メタデータ) (2024-06-28T13:57:27Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
一般的に使われているユーザトークンモデルは、より複雑なモデルよりも一貫して優れています。
以上の結果から,コーパス統計とアノテータモデリング性能の関係が明らかになった。
論文 参考訳(メタデータ) (2024-04-02T22:27:24Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) は、モデルインターフェースに基づいた基礎モデル(FM)の研究、修正、設計に焦点を当てている。
LFM技術の研究は、モデルチューニング、モデル蒸留、モデル再利用、メタラーニング、モデル編集の5つの分野に大別できる。
本稿では, LFM の観点から, FM に基づく現在の手法を概観する。
論文 参考訳(メタデータ) (2023-10-12T10:20:36Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
視覚シーンの構成的性質を観察し、推論する視覚システムは、我々の世界を理解するのに不可欠である。
モデルは、このようなモダリティと大規模なトレーニングデータとのギャップを埋めることを学び、コンテキスト推論、一般化、テスト時の迅速な機能を容易にした。
このようなモデルの出力は、例えば、バウンディングボックスを設けて特定のオブジェクトをセグメント化したり、画像や映像シーンについて質問したり、言語命令でロボットの動作を操作することで対話的な対話を行うなど、リトレーニングすることなく、人為的なプロンプトによって変更することができる。
論文 参考訳(メタデータ) (2023-07-25T17:59:18Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
ラベル付きデータのトレーニングセットから学ぶ機会のない、新しいテストデータに対する予測を検討する。
専門家モデルのセットと予測へのアクセスと、トレーニングに使用するデータセットに関する制限された情報を提供すること。
論文 参考訳(メタデータ) (2022-10-11T10:20:31Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
我々は、さまざまなオンライン会話形式のニュースコメント、ディスカッションフォーラム、コミュニティ質問応答フォーラム、電子メールスレッドに関する4つの新しいデータセットをクラウドソースする。
我々は、データセットの最先端モデルをベンチマークし、データに関連する特徴を分析します。
論文 参考訳(メタデータ) (2021-06-01T22:17:13Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
オピニオン要約は、複数の文書で表現された主観的な情報を反映したテキストの自動生成である。
本研究では,要約テキストの生成をブートストラップするのには,少数の要約でも十分であることを示す。
提案手法は, 従来の抽出法および抽象法を, 自動的, 人的評価において大きく上回っている。
論文 参考訳(メタデータ) (2020-04-30T15:37:38Z) - Keyword Assisted Topic Models [0.0]
少数のキーワードを提供することで,話題モデルの計測性能を大幅に向上させることができることを示す。
KeyATMは、より解釈可能な結果を提供し、文書分類性能が向上し、標準トピックモデルよりもトピックの数に敏感でない。
論文 参考訳(メタデータ) (2020-04-13T14:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。