Holistic Evaluations of Topic Models
- URL: http://arxiv.org/abs/2507.23364v1
- Date: Thu, 31 Jul 2025 09:20:04 GMT
- Title: Holistic Evaluations of Topic Models
- Authors: Thomas Compton,
- Abstract summary: This article evaluates topic models from a database perspective, drawing insights from 1140 BERTopic model runs.<n>The goal is to identify trade-offs in optimizing model parameters and to reflect on what these findings mean for the interpretation and responsible use of topic models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Topic models are gaining increasing commercial and academic interest for their ability to summarize large volumes of unstructured text. As unsupervised machine learning methods, they enable researchers to explore data and help general users understand key themes in large text collections. However, they risk becoming a 'black box', where users input data and accept the output as an accurate summary without scrutiny. This article evaluates topic models from a database perspective, drawing insights from 1140 BERTopic model runs. The goal is to identify trade-offs in optimizing model parameters and to reflect on what these findings mean for the interpretation and responsible use of topic models
Related papers
- topicwizard -- a Modern, Model-agnostic Framework for Topic Model Visualization and Interpretation [0.0]
We introduce topicwizard, a framework for model-agnostic topic model interpretation.<n>It helps users examine the complex semantic relations between documents, words and topics learned by topic models.
arXiv Detail & Related papers (2025-05-19T12:19:01Z) - Investigating the Impact of Text Summarization on Topic Modeling [13.581341206178525]
In this paper, an approach is proposed that further enhances topic modeling performance by utilizing a pre-trained large language model (LLM)
Few shot prompting is used to generate summaries of different lengths to compare their impact on topic modeling.
The proposed method yields better topic diversity and comparable coherence values compared to previous models.
arXiv Detail & Related papers (2024-09-28T19:45:45Z) - Interactive Topic Models with Optimal Transport [75.26555710661908]
We present EdTM, as an approach for label name supervised topic modeling.
EdTM models topic modeling as an assignment problem while leveraging LM/LLM based document-topic affinities.
arXiv Detail & Related papers (2024-06-28T13:57:27Z) - Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Learning from models beyond fine-tuning [78.20895343699658]
Learn From Model (LFM) focuses on the research, modification, and design of foundation models (FM) based on the model interface.<n>The study of LFM techniques can be broadly categorized into five major areas: model tuning, model distillation, model reuse, meta learning and model editing.<n>This paper gives a comprehensive review of the current methods based on FM from the perspective of LFM.
arXiv Detail & Related papers (2023-10-12T10:20:36Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
Machine learning and natural language processing algorithms have been deployed to analyze the vast amount of textual data available online.
In this study, we examine and compare five frequently used topic modeling methods specifically applied to customer reviews.
Our findings reveal that BERTopic consistently yield more meaningful extracted topics and achieve favorable results.
arXiv Detail & Related papers (2023-08-19T08:18:04Z) - Foundational Models Defining a New Era in Vision: A Survey and Outlook [151.49434496615427]
Vision systems to see and reason about the compositional nature of visual scenes are fundamental to understanding our world.
The models learned to bridge the gap between such modalities coupled with large-scale training data facilitate contextual reasoning, generalization, and prompt capabilities at test time.
The output of such models can be modified through human-provided prompts without retraining, e.g., segmenting a particular object by providing a bounding box, having interactive dialogues by asking questions about an image or video scene or manipulating the robot's behavior through language instructions.
arXiv Detail & Related papers (2023-07-25T17:59:18Z) - Synthetic Model Combination: An Instance-wise Approach to Unsupervised
Ensemble Learning [92.89846887298852]
Consider making a prediction over new test data without any opportunity to learn from a training set of labelled data.
Give access to a set of expert models and their predictions alongside some limited information about the dataset used to train them.
arXiv Detail & Related papers (2022-10-11T10:20:31Z) - ConvoSumm: Conversation Summarization Benchmark and Improved Abstractive
Summarization with Argument Mining [61.82562838486632]
We crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads.
We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data.
arXiv Detail & Related papers (2021-06-01T22:17:13Z) - Few-Shot Learning for Opinion Summarization [117.70510762845338]
Opinion summarization is the automatic creation of text reflecting subjective information expressed in multiple documents.
In this work, we show that even a handful of summaries is sufficient to bootstrap generation of the summary text.
Our approach substantially outperforms previous extractive and abstractive methods in automatic and human evaluation.
arXiv Detail & Related papers (2020-04-30T15:37:38Z) - Keyword Assisted Topic Models [0.0]
We show that providing a small number of keywords can substantially enhance the measurement performance of topic models.
KeyATM provides more interpretable results, has better document classification performance, and is less sensitive to the number of topics than the standard topic models.
arXiv Detail & Related papers (2020-04-13T14:35:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.