論文の概要: Smart Video Capsule Endoscopy: Raw Image-Based Localization for Enhanced GI Tract Investigation
- arxiv url: http://arxiv.org/abs/2507.23398v1
- Date: Thu, 31 Jul 2025 10:13:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.509904
- Title: Smart Video Capsule Endoscopy: Raw Image-Based Localization for Enhanced GI Tract Investigation
- Title(参考訳): スマートビデオカプセル内視鏡:GIトラクトインスタレーションのための生画像に基づく局在化
- Authors: Oliver Bause, Julia Werner, Paul Palomero Bernardo, Oliver Bringmann,
- Abstract要約: Video Capsule Endoscopy は小腸の検査において重要な治療薬である。
従来のビデオカプセルと比較して小腸に入る前に平均89.9%のエネルギーを節約することができる。
- 参考スコア(独自算出の注目度): 0.5714074111744111
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For many real-world applications involving low-power sensor edge devices deep neural networks used for image classification might not be suitable. This is due to their typically large model size and require- ment of operations often exceeding the capabilities of such resource lim- ited devices. Furthermore, camera sensors usually capture images with a Bayer color filter applied, which are subsequently converted to RGB images that are commonly used for neural network training. However, on resource-constrained devices, such conversions demands their share of energy and optimally should be skipped if possible. This work ad- dresses the need for hardware-suitable AI targeting sensor edge devices by means of the Video Capsule Endoscopy, an important medical proce- dure for the investigation of the small intestine, which is strongly limited by its battery lifetime. Accurate organ classification is performed with a final accuracy of 93.06% evaluated directly on Bayer images involv- ing a CNN with only 63,000 parameters and time-series analysis in the form of Viterbi decoding. Finally, the process of capturing images with a camera and raw image processing is demonstrated with a customized PULPissimo System-on-Chip with a RISC-V core and an ultra-low power hardware accelerator providing an energy-efficient AI-based image clas- sification approach requiring just 5.31 {\mu}J per image. As a result, it is possible to save an average of 89.9% of energy before entering the small intestine compared to classic video capsules.
- Abstract(参考訳): 低消費電力センサエッジデバイスを含む現実世界の多くのアプリケーションでは、画像分類に使用されるディープニューラルネットワークは適さないかもしれない。
これは、通常、モデルのサイズが大きく、必要な操作が、そのようなリソースのlim-itedデバイスの能力を超えることがしばしばあるためである。
さらに、カメラセンサーは通常、ベイア色フィルターを適用して画像をキャプチャし、その後、ニューラルネットワークのトレーニングに一般的に使用されるRGB画像に変換する。
しかし、リソース制約のあるデバイスでは、そのような変換はエネルギーの共有を要求され、可能であれば最適にスキップされるべきである。
この研究は、センサーエッジデバイスをターゲットにしたハードウェアに適したAIの必要性を、ビデオカプセル内視鏡(Video Capsule Endoscopy)によって補っている。
正確な臓器分類は,63,000のパラメータしか持たないCNN画像をビタビ復号法で直接評価し,93.06%の精度で行う。
最後に、RISC-Vコアを備えたカスタマイズされたPULPissimo System-on-Chipと、エネルギー効率のよいAIベースの画像クラスサイズアプローチを提供する超低消費電力ハードウェアアクセラレータで、カメラと生画像処理で画像をキャプチャする過程を実証する。
その結果、従来のビデオカプセルと比較して小腸に入る前に平均89.9%のエネルギーを節約できる。
関連論文リスト
- Domain-specific augmentations with resolution agnostic self-attention mechanism improves choroid segmentation in optical coherence tomography images [3.8485899972356337]
脈絡膜は眼の重要な血管層であり、網膜光受容体に酸素を供給する。
現在、コロイドを測定するには、独立した半自動および深層学習に基づく複数のアルゴリズムを使う必要がある。
我々は、コロイドセグメンテーション(REACH)のためのロバストで解像度に依存しない、効果的な注意に基づくネットワークを提案する。
論文 参考訳(メタデータ) (2024-05-23T11:35:23Z) - Ultrasound Image Enhancement using CycleGAN and Perceptual Loss [4.428854369140015]
本研究は超音波画像,特に携帯型ハンドヘルドデバイスで捉えた画像の高機能化を目的とした高度なフレームワークを導入する。
我々は,5臓器系における超音波画像強調のために,CycleGANモデルを用いた。
論文 参考訳(メタデータ) (2023-12-18T23:21:00Z) - Remote Bio-Sensing: Open Source Benchmark Framework for Fair Evaluation
of rPPG [2.82697733014759]
r(pg photoplethysmography)は、カメラで捉えたヘモグロビンの光吸収特性を用いてBVP(Blood Volume Pulse)を測定し、分析する技術である。
本研究は,多種多様なデータセットを対象とした様々なrベンチマーク手法の評価を行い,妥当性評価と比較を行うためのフレームワークを提供することを目的とする。
論文 参考訳(メタデータ) (2023-07-24T09:35:47Z) - Building Flyweight FLIM-based CNNs with Adaptive Decoding for Object
Detection [40.97322222472642]
本研究では、ユーザ描画マーカーからオブジェクトを検出するために、畳み込みニューラルネットワーク(CNN)層を構築する方法を提案する。
糞便サンプルの顕微鏡画像におけるSchistosomiasis mansoni卵の検出と,衛星画像における船舶の検出に対処する。
我々のCNNは、SOTAオブジェクト検出器より数千倍も小さく、CPU実行に適している。
論文 参考訳(メタデータ) (2023-06-26T16:48:20Z) - DopUS-Net: Quality-Aware Robotic Ultrasound Imaging based on Doppler
Signal [48.97719097435527]
DopUS-Netはドップラー画像とBモード画像を組み合わせることで、小血管のセグメンテーション精度と堅牢性を高める。
動脈再同定モジュールは、リアルタイムセグメンテーション結果を質的に評価し、拡張ドップラー画像に対するプローブポーズを自動的に最適化する。
論文 参考訳(メタデータ) (2023-05-15T18:19:29Z) - PixelRNN: In-pixel Recurrent Neural Networks for End-to-end-optimized
Perception with Neural Sensors [42.18718773182277]
従来の画像センサは高速フレームレートで高解像度画像をデジタル化し、さらなる処理のためにセンサーから送信する必要がある大量のデータを生成する。
我々は、純粋なバイナリ演算を用いて、センサ上の時間的特徴を符号化する効率的なリカレントニューラルネットワークアーキテクチャ、PixelRNNの処理を開発する。
PixelRNNは、従来のシステムと比較して、センサから送信されるデータ量を64倍に削減し、手ジェスチャー認識や唇読解タスクの競合精度を提供する。
論文 参考訳(メタデータ) (2023-04-11T18:16:47Z) - Improving the Timing Resolution of Positron Emission Tomography
Detectors Using Boosted Learning -- A Residual Physics Approach [0.4999814847776097]
本研究は,機械学習(ML)と残差物理を用いた検出器最適化の新しい多用途手法を提案する。
ポジトロン・エミッション・トモグラフィー (PET) の概念を適用し, 一致時間分解能(CTR)の向上を目的とした。
臨床的に有意な19mmの検出器ではCTRを有意に改善し(20%以上)、185 ps (450-550 keV) のCTRに到達した。
論文 参考訳(メタデータ) (2023-02-03T12:10:24Z) - Deep learning at the edge enables real-time streaming ptychographic
imaging [7.4083593332068975]
プチコグラフィーのようなコヒーレントな顕微鏡技術は、ナノスケールの材料特性に革命をもたらす可能性がある。
従来のアプローチでは、高速コヒーレントイメージング実験からサンプル画像をリアルタイムで回収するのに十分ではない。
ここでは、エッジでの人工知能と高性能コンピューティングを活用して、検出器から直接最大2kHzでストリーミングされるX線写真データのリアルタイムインバージョンを可能にするワークフローを実演する。
論文 参考訳(メタデータ) (2022-09-20T02:02:37Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
大量の胸部ラジオグラフィーの効率的な分析は、医師や放射線技師を助けることができる。
本稿では,視覚情報の効率的な識別と符号化のための離散ウェーブレット変換(DWT)を提案する。
論文 参考訳(メタデータ) (2022-05-08T15:29:54Z) - Colorectal Polyp Classification from White-light Colonoscopy Images via
Domain Alignment [57.419727894848485]
大腸内視鏡画像からの正確な診断を支援するためには,コンピュータ支援診断システムが必要である。
これまでのほとんどの研究では、Narrow-Band Imaging (NBI) や他の拡張画像を用いて、ポリプの分化モデルの開発を試みている。
正確な大腸ポリープ分類のための教師/学生アーキテクチャに基づく新しい枠組みを提案する。
論文 参考訳(メタデータ) (2021-08-05T09:31:46Z) - Searching for Efficient Architecture for Instrument Segmentation in
Robotic Surgery [58.63306322525082]
ほとんどのアプリケーションは、高解像度の外科画像の正確なリアルタイムセグメンテーションに依存している。
我々は,高解像度画像のリアルタイム推論を行うために調整された,軽量で高効率なディープ残差アーキテクチャを設計する。
論文 参考訳(メタデータ) (2020-07-08T21:38:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。