Future Illiteracies -- Architectural Epistemology and Artificial Intelligence
- URL: http://arxiv.org/abs/2507.23434v1
- Date: Thu, 31 Jul 2025 11:15:39 GMT
- Title: Future Illiteracies -- Architectural Epistemology and Artificial Intelligence
- Authors: Mustapha El Moussaoui,
- Abstract summary: We argue that when architects approach AI passively, without actively engaging their own creative faculties, they risk becoming passive users locked in an endless loop of horizontal expansion without meaningful vertical growth.<n>By examining the AI of architecture in the age, this paper calls for a paradigm where AI serves as a tool for vertical and horizontal growth, contingent on human creativity and agency.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the age of artificial intelligence, architectural practice faces a paradox of immense potential and creeping standardization. As humans are increasingly relying on AI-generated outputs, architecture risks becoming a spectacle of repetition- a shuffling of data that neither truly innovates nor progresses vertically in creative depth. This paper explores the critical role of data in AI systems, scrutinizing the training datasets that form the basis of AI's generative capabilities and the implications for architectural practice. We argue that when architects approach AI passively, without actively engaging their own creative and critical faculties, they risk becoming passive users locked in an endless loop of horizontal expansion without meaningful vertical growth. By examining the epistemology of architecture in the AI age, this paper calls for a paradigm where AI serves as a tool for vertical and horizontal growth, contingent on human creativity and agency. Only by mastering this dynamic relationship can architects avoid the trap of passive, standardized design and unlock the true potential of AI.
Related papers
- Architectural practice process and artificial intelligence -- an evolving practice [0.0]
Article explores the multifaceted roles of AI in the architectural process.<n>It emphasizes its potential to enhance creativity and efficiency while addressing its limitations.<n>Findings reveal that AI is increasingly integrated across various stages of the architectural process.
arXiv Detail & Related papers (2025-07-31T15:33:28Z) - Personalized Artificial General Intelligence (AGI) via Neuroscience-Inspired Continuous Learning Systems [3.764721243654025]
Current approaches largely depend on expanding model parameters, which improves task-specific performance but falls short in enabling continuous, adaptable, and generalized learning.<n>This paper reviews the state of continual learning and neuroscience-inspired AI, and proposes a novel architecture for Personalized AGI that integrates brain-like learning mechanisms for edge deployment.<n>Building on these insights, we outline an AI architecture that features complementary fast-and-slow learning modules, synaptic self-optimization, and memory-efficient model updates to support on-device lifelong adaptation.
arXiv Detail & Related papers (2025-04-27T16:10:17Z) - AI Automatons: AI Systems Intended to Imitate Humans [54.19152688545896]
There is a growing proliferation of AI systems designed to mimic people's behavior, work, abilities, likenesses, or humanness.<n>The research, design, deployment, and availability of such AI systems have prompted growing concerns about a wide range of possible legal, ethical, and other social impacts.
arXiv Detail & Related papers (2025-03-04T03:55:38Z) - Problematizing AI Omnipresence in Landscape Architecture [6.046591474843391]
This position paper argues for, and offers, a critical lens through which to examine the current AI frenzy in the landscape architecture profession.
The authors propose five archetypes or mental modes that landscape architects might inhabit when thinking about AI.
arXiv Detail & Related papers (2024-06-03T15:20:05Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
We introduce highlighted robustness challenges in the AI lifecycle and motivate AI maintenance by making analogies to car maintenance.
We propose an AI model inspection framework to detect and mitigate robustness risks.
Our proposal for AI maintenance facilitates robustness assessment, status tracking, risk scanning, model hardening, and regulation throughout the AI lifecycle.
arXiv Detail & Related papers (2023-01-08T15:02:38Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
Several researchers in the area are trying to develop a robust, beneficial, and safe concept of artificial intelligence.
It is of utmost importance that artificial intelligent agents have their values aligned with human values.
A possible approach to this problem would be to use theoretical models such as SED.
arXiv Detail & Related papers (2020-05-12T03:58:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.