Causal Reasoning in Pieces: Modular In-Context Learning for Causal Discovery
- URL: http://arxiv.org/abs/2507.23488v1
- Date: Thu, 31 Jul 2025 12:10:27 GMT
- Title: Causal Reasoning in Pieces: Modular In-Context Learning for Causal Discovery
- Authors: Kacper Kadziolka, Saber Salehkaleybar,
- Abstract summary: Causal inference remains a fundamental challenge for large language models.<n>Recent advances in internal reasoning with large language models have sparked interest.<n>We study causal discovery on the Corr2Cause benchmark using the OpenAI's o-series and DeepSeek-R model families.
- Score: 6.72184534513047
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal inference remains a fundamental challenge for large language models. Recent advances in internal reasoning with large language models have sparked interest in whether state-of-the-art reasoning models can robustly perform causal discovery-a task where conventional models often suffer from severe overfitting and near-random performance under data perturbations. We study causal discovery on the Corr2Cause benchmark using the emergent OpenAI's o-series and DeepSeek-R model families and find that these reasoning-first architectures achieve significantly greater native gains than prior approaches. To capitalize on these strengths, we introduce a modular in-context pipeline inspired by the Tree-of-Thoughts and Chain-of-Thoughts methodologies, yielding nearly three-fold improvements over conventional baselines. We further probe the pipeline's impact by analyzing reasoning chain length, complexity, and conducting qualitative and quantitative comparisons between conventional and reasoning models. Our findings suggest that while advanced reasoning models represent a substantial leap forward, carefully structured in-context frameworks are essential to maximize their capabilities and offer a generalizable blueprint for causal discovery across diverse domains.
Related papers
- Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models [49.598776427454176]
Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks.<n>However, with the widespread application of these models, the problem of overthinking has gradually emerged.<n>Various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability.
arXiv Detail & Related papers (2025-08-04T06:54:31Z) - From Thinking to Output: Chain-of-Thought and Text Generation Characteristics in Reasoning Language Models [10.38327947136263]
This paper proposes a novel framework for analyzing the reasoning characteristics of four cutting-edge large reasoning models.<n>A diverse dataset consists of real-world scenario-based questions covering logical deduction, causal inference, and multi-step problem-solving.<n>The research results uncover various patterns of how these models balance exploration and exploitation, deal with problems, and reach conclusions.
arXiv Detail & Related papers (2025-06-20T14:02:16Z) - Discovering Hierarchical Latent Capabilities of Language Models via Causal Representation Learning [22.32435186013626]
We propose a causal representation learning framework wherein observed benchmark performance is modeled as a linear transformation of a few latent capability factors.<n>Applying this approach to a comprehensive dataset encompassing over 1500 models evaluated across six benchmarks, we identify a concise three-node linear causal structure that reliably explains the observed performance variations.
arXiv Detail & Related papers (2025-06-12T06:07:42Z) - Preference Learning for AI Alignment: a Causal Perspective [55.2480439325792]
We frame this problem in a causal paradigm, providing the rich toolbox of causality to identify persistent challenges.<n>Inheriting from the literature of causal inference, we identify key assumptions necessary for reliable generalisation.<n>We illustrate failure modes of naive reward models and demonstrate how causally-inspired approaches can improve model robustness.
arXiv Detail & Related papers (2025-06-06T10:45:42Z) - A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - Causality can systematically address the monsters under the bench(marks) [64.36592889550431]
Benchmarks are plagued by various biases, artifacts, or leakage.<n>Models may behave unreliably due to poorly explored failure modes.<n> causality offers an ideal framework to systematically address these challenges.
arXiv Detail & Related papers (2025-02-07T17:01:37Z) - Differentiable Causal Discovery For Latent Hierarchical Causal Models [19.373348700715578]
We present new theoretical results on the identifiability of nonlinear latent hierarchical causal models.<n>We develop a novel differentiable causal discovery algorithm that efficiently estimates the structure of such models.
arXiv Detail & Related papers (2024-11-29T09:08:20Z) - Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning [26.34622544479565]
Causal dynamics learning is a promising approach to enhancing robustness in reinforcement learning.
We propose a novel model that infers fine-grained causal structures and employs them for prediction.
arXiv Detail & Related papers (2024-06-05T13:13:58Z) - Distributional Associations vs In-Context Reasoning: A Study of Feed-forward and Attention Layers [49.80959223722325]
We study the distinction between feed-forward and attention layers in large language models.<n>We find that feed-forward layers tend to learn simple distributional associations such as bigrams, while attention layers focus on in-context reasoning.
arXiv Detail & Related papers (2024-06-05T08:51:08Z) - Towards CausalGPT: A Multi-Agent Approach for Faithful Knowledge Reasoning via Promoting Causal Consistency in LLMs [55.66353783572259]
Causal-Consistency Chain-of-Thought harnesses multi-agent collaboration to bolster the faithfulness and causality of foundation models.<n>Our framework demonstrates significant superiority over state-of-the-art methods through extensive and comprehensive evaluations.
arXiv Detail & Related papers (2023-08-23T04:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.