Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning
- URL: http://arxiv.org/abs/2406.03234v1
- Date: Wed, 5 Jun 2024 13:13:58 GMT
- Title: Fine-Grained Causal Dynamics Learning with Quantization for Improving Robustness in Reinforcement Learning
- Authors: Inwoo Hwang, Yunhyeok Kwak, Suhyung Choi, Byoung-Tak Zhang, Sanghack Lee,
- Abstract summary: Causal dynamics learning is a promising approach to enhancing robustness in reinforcement learning.
We propose a novel model that infers fine-grained causal structures and employs them for prediction.
- Score: 26.34622544479565
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Causal dynamics learning has recently emerged as a promising approach to enhancing robustness in reinforcement learning (RL). Typically, the goal is to build a dynamics model that makes predictions based on the causal relationships among the entities. Despite the fact that causal connections often manifest only under certain contexts, existing approaches overlook such fine-grained relationships and lack a detailed understanding of the dynamics. In this work, we propose a novel dynamics model that infers fine-grained causal structures and employs them for prediction, leading to improved robustness in RL. The key idea is to jointly learn the dynamics model with a discrete latent variable that quantizes the state-action space into subgroups. This leads to recognizing meaningful context that displays sparse dependencies, where causal structures are learned for each subgroup throughout the training. Experimental results demonstrate the robustness of our method to unseen states and locally spurious correlations in downstream tasks where fine-grained causal reasoning is crucial. We further illustrate the effectiveness of our subgroup-based approach with quantization in discovering fine-grained causal relationships compared to prior methods.
Related papers
- Unified Causality Analysis Based on the Degrees of Freedom [1.2289361708127877]
This paper presents a unified method capable of identifying fundamental causal relationships between pairs of systems.
By analyzing the degrees of freedom in the system, our approach provides a more comprehensive understanding of both causal influence and hidden confounders.
This unified framework is validated through theoretical models and simulations, demonstrating its robustness and potential for broader application.
arXiv Detail & Related papers (2024-10-25T10:57:35Z) - Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
Real-world applications of reinforcement learning often involve environments where agents operate on complex, high-dimensional observations.
This paper addresses the question of reinforcement learning under $textitgeneral$ latent dynamics from a statistical and algorithmic perspective.
arXiv Detail & Related papers (2024-10-23T14:22:49Z) - Dynamic Post-Hoc Neural Ensemblers [55.15643209328513]
In this study, we explore employing neural networks as ensemble methods.
Motivated by the risk of learning low-diversity ensembles, we propose regularizing the model by randomly dropping base model predictions.
We demonstrate this approach lower bounds the diversity within the ensemble, reducing overfitting and improving generalization capabilities.
arXiv Detail & Related papers (2024-10-06T15:25:39Z) - Revisiting Spurious Correlation in Domain Generalization [12.745076668687748]
We build a structural causal model (SCM) to describe the causality within data generation process.
We further conduct a thorough analysis of the mechanisms underlying spurious correlation.
In this regard, we propose to control confounding bias in OOD generalization by introducing a propensity score weighted estimator.
arXiv Detail & Related papers (2024-06-17T13:22:00Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework
with Causal-Aware Policy [40.33036146207819]
We consider explicitly modeling the generation process of states with the graphical causal model.
We formulate the causal structure updating into the RL interaction process with active intervention learning of the environment.
arXiv Detail & Related papers (2024-02-07T14:09:34Z) - Towards Causal Foundation Model: on Duality between Causal Inference and Attention [18.046388712804042]
We take a first step towards building causally-aware foundation models for treatment effect estimations.
We propose a novel, theoretically justified method called Causal Inference with Attention (CInA)
arXiv Detail & Related papers (2023-10-01T22:28:34Z) - Interpretable Imitation Learning with Dynamic Causal Relations [65.18456572421702]
We propose to expose captured knowledge in the form of a directed acyclic causal graph.
We also design this causal discovery process to be state-dependent, enabling it to model the dynamics in latent causal graphs.
The proposed framework is composed of three parts: a dynamic causal discovery module, a causality encoding module, and a prediction module, and is trained in an end-to-end manner.
arXiv Detail & Related papers (2023-09-30T20:59:42Z) - Causal Dynamics Learning for Task-Independent State Abstraction [61.707048209272884]
We introduce Causal Dynamics Learning for Task-Independent State Abstraction (CDL)
CDL learns a theoretically proved causal dynamics model that removes unnecessary dependencies between state variables and the action.
A state abstraction can then be derived from the learned dynamics.
arXiv Detail & Related papers (2022-06-27T17:02:53Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
We introduce an active intervention-targeting mechanism which enables a quick identification of the underlying causal structure of the data-generating process.
Our method significantly reduces the required number of interactions compared with random intervention targeting.
We demonstrate superior performance on multiple benchmarks from simulated to real-world data.
arXiv Detail & Related papers (2021-09-06T13:10:37Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.