A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
- URL: http://arxiv.org/abs/2507.23540v1
- Date: Thu, 31 Jul 2025 13:30:47 GMT
- Title: A Unified Perception-Language-Action Framework for Adaptive Autonomous Driving
- Authors: Yi Zhang, Erik Leo Haß, Kuo-Yi Chao, Nenad Petrovic, Yinglei Song, Chengdong Wu, Alois Knoll,
- Abstract summary: We propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture.<n>This framework unifies low-level sensory processing with high-level contextual reasoning to enable context-aware, explainable, and safety-bounded autonomous driving.
- Score: 10.685706490545956
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autonomous driving systems face significant challenges in achieving human-like adaptability, robustness, and interpretability in complex, open-world environments. These challenges stem from fragmented architectures, limited generalization to novel scenarios, and insufficient semantic extraction from perception. To address these limitations, we propose a unified Perception-Language-Action (PLA) framework that integrates multi-sensor fusion (cameras, LiDAR, radar) with a large language model (LLM)-augmented Vision-Language-Action (VLA) architecture, specifically a GPT-4.1-powered reasoning core. This framework unifies low-level sensory processing with high-level contextual reasoning, tightly coupling perception with natural language-based semantic understanding and decision-making to enable context-aware, explainable, and safety-bounded autonomous driving. Evaluations on an urban intersection scenario with a construction zone demonstrate superior performance in trajectory tracking, speed prediction, and adaptive planning. The results highlight the potential of language-augmented cognitive frameworks for advancing the safety, interpretability, and scalability of autonomous driving systems.
Related papers
- ReAL-AD: Towards Human-Like Reasoning in End-to-End Autonomous Driving [27.75047397292818]
End-to-end autonomous driving has emerged as a promising approach to unify perception, prediction, and planning within a single framework.<n>We propose ReAL-AD, a Reasoning-Augmented Learning framework that structures decision-making in autonomous driving based on the three-tier human cognitive model.<n>We show that integrating our framework improves planning accuracy and safety by over 30%, making end-to-end autonomous driving more interpretable and aligned with human-like hierarchical reasoning.
arXiv Detail & Related papers (2025-07-16T02:23:24Z) - Case-based Reasoning Augmented Large Language Model Framework for Decision Making in Realistic Safety-Critical Driving Scenarios [1.5367554212163714]
This paper presents a Case-Based Reasoning Augmented Large Language Model (CBR-LLM) framework for evasive maneuver decision-making in complex risk scenarios.<n>Our approach integrates semantic scene understanding from dashcam video inputs with the retrieval of relevant past driving cases.<n>Experiments show that our framework improves decision accuracy, justification quality, and alignment with human expert behavior.
arXiv Detail & Related papers (2025-06-25T15:19:25Z) - SOLVE: Synergy of Language-Vision and End-to-End Networks for Autonomous Driving [51.47621083057114]
SOLVE is an innovative framework that synergizes Vision-Language Models with end-to-end (E2E) models to enhance autonomous vehicle planning.<n>Our approach emphasizes knowledge sharing at the feature level through a shared visual encoder, enabling comprehensive interaction between VLM and E2E components.
arXiv Detail & Related papers (2025-05-22T15:44:30Z) - A Framework for a Capability-driven Evaluation of Scenario Understanding for Multimodal Large Language Models in Autonomous Driving [15.24721920935653]
Multimodal large language models (MLLMs) hold the potential to enhance autonomous driving.<n>Their integration into autonomous driving systems shows promising results in isolated proof-of-concept applications.<n>This paper proposes a holistic framework for a capability-driven evaluation of MLLMs in autonomous driving.
arXiv Detail & Related papers (2025-03-14T13:43:26Z) - SafeAuto: Knowledge-Enhanced Safe Autonomous Driving with Multimodal Foundation Models [63.71984266104757]
We propose SafeAuto, a framework that enhances MLLM-based autonomous driving by incorporating both unstructured and structured knowledge.<n>To explicitly integrate safety knowledge, we develop a reasoning component that translates traffic rules into first-order logic.<n>Our Multimodal Retrieval-Augmented Generation model leverages video, control signals, and environmental attributes to learn from past driving experiences.
arXiv Detail & Related papers (2025-02-28T21:53:47Z) - INSIGHT: Enhancing Autonomous Driving Safety through Vision-Language Models on Context-Aware Hazard Detection and Edge Case Evaluation [7.362380225654904]
INSIGHT is a hierarchical vision-language model (VLM) framework designed to enhance hazard detection and edge-case evaluation.<n>By using multimodal data fusion, our approach integrates semantic and visual representations, enabling precise interpretation of driving scenarios.<n> Experimental results on the BDD100K dataset demonstrate a substantial improvement in hazard prediction straightforwardness and accuracy over existing models.
arXiv Detail & Related papers (2025-02-01T01:43:53Z) - Generative Planning with 3D-vision Language Pre-training for End-to-End Autonomous Driving [20.33096710167997]
generative planning with 3D-vision language pre-training model named GPVL is proposed for end-to-end autonomous driving.<n>Cross-modal language model is introduced to generate holistic driving decisions and fine-grained trajectories.<n>It is believed that the effective, robust and efficient performance of GPVL is crucial for the practical application of future autonomous driving systems.
arXiv Detail & Related papers (2025-01-15T15:20:46Z) - VLP: Vision Language Planning for Autonomous Driving [52.640371249017335]
This paper presents a novel Vision-Language-Planning framework that exploits language models to bridge the gap between linguistic understanding and autonomous driving.
It achieves state-of-the-art end-to-end planning performance on the NuScenes dataset by achieving 35.9% and 60.5% reduction in terms of average L2 error and collision rates, respectively.
arXiv Detail & Related papers (2024-01-10T23:00:40Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
This paper explores the integration of Large Language Models (LLMs) into Autonomous Driving systems.
LLMs are intelligent decision-makers in behavioral planning, augmented with a safety verifier shield for contextual safety learning.
We present two key studies in a simulated environment: an adaptive LLM-conditioned Model Predictive Control (MPC) and an LLM-enabled interactive behavior planning scheme with a state machine.
arXiv Detail & Related papers (2023-11-28T03:13:09Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
We propose to enable high-level reasoning in AI systems by integrating cognitive architectures with external neuro-symbolic components.
We illustrate a hybrid framework centered on ACT-R and we discuss the role of generative models in recent and future applications.
arXiv Detail & Related papers (2023-11-13T21:20:17Z) - GPT-Driver: Learning to Drive with GPT [47.14350537515685]
We present a simple yet effective approach that can transform the OpenAI GPT-3.5 model into a reliable motion planner for autonomous vehicles.
We capitalize on the strong reasoning capabilities and generalization potential inherent to Large Language Models (LLMs)
We evaluate our approach on the large-scale nuScenes dataset, and extensive experiments substantiate the effectiveness, generalization ability, and interpretability of our GPT-based motion planner.
arXiv Detail & Related papers (2023-10-02T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.