論文の概要: MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
- arxiv url: http://arxiv.org/abs/2507.23597v1
- Date: Thu, 31 Jul 2025 14:36:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-01 17:19:09.923644
- Title: MoGA: 3D Generative Avatar Prior for Monocular Gaussian Avatar Reconstruction
- Title(参考訳): 単眼ガウスアバター再建に先立つ3次元アバター
- Authors: Zijian Dong, Longteng Duan, Jie Song, Michael J. Black, Andreas Geiger,
- Abstract要約: MoGAは高忠実度3Dガウスアバターを単一視点画像から再構成する新しい手法である。
提案手法は最先端の手法を超越し,実世界のシナリオを一般化する。
- 参考スコア(独自算出の注目度): 65.5412504339528
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MoGA, a novel method to reconstruct high-fidelity 3D Gaussian avatars from a single-view image. The main challenge lies in inferring unseen appearance and geometric details while ensuring 3D consistency and realism. Most previous methods rely on 2D diffusion models to synthesize unseen views; however, these generated views are sparse and inconsistent, resulting in unrealistic 3D artifacts and blurred appearance. To address these limitations, we leverage a generative avatar model, that can generate diverse 3D avatars by sampling deformed Gaussians from a learned prior distribution. Due to the limited amount of 3D training data such a 3D model alone cannot capture all image details of unseen identities. Consequently, we integrate it as a prior, ensuring 3D consistency by projecting input images into its latent space and enforcing additional 3D appearance and geometric constraints. Our novel approach formulates Gaussian avatar creation as a model inversion process by fitting the generative avatar to synthetic views from 2D diffusion models. The generative avatar provides a meaningful initialization for model fitting, enforces 3D regularization, and helps in refining pose estimation. Experiments show that our method surpasses state-of-the-art techniques and generalizes well to real-world scenarios. Our Gaussian avatars are also inherently animatable
- Abstract(参考訳): 単一視点画像から高忠実度3Dガウスアバターを再構成する新しい手法であるMoGAを提案する。
主な課題は、3Dの一貫性とリアリズムを確保しながら、目に見えない外観と幾何学的詳細を推測することである。
従来のほとんどの方法は、目に見えないビューを合成するための2次元拡散モデルに依存していたが、これら生成されたビューはスパースで一貫性がなく、非現実的な3Dアーティファクトとぼやけた外観をもたらす。
これらの制約に対処するために、学習前の分布から変形したガウスアンをサンプリングすることにより、多種多様な3次元アバターを生成できる生成アバターモデルを利用する。
限られた量の3Dトレーニングデータのため、3Dモデルだけでは、目に見えないアイデンティティのすべての画像の詳細をキャプチャすることはできない。
その結果,入力画像をその潜在空間に投影し,付加的な3次元外観と幾何的制約を課すことにより,事前の3次元整合性を確保する。
提案手法は, 2次元拡散モデルからの合成ビューに生成アバターを適合させることにより, モデル逆転過程としてガウスアバターの生成を定式化する。
生成アバターは、モデルフィッティングの有意義な初期化を提供し、3D正規化を強制し、ポーズ推定の精製に役立つ。
実験により,本手法は最先端技術を超え,実世界のシナリオに適していることが示された。
我々のガウスアバターも本質的にアニマタブルである
関連論文リスト
- AdaHuman: Animatable Detailed 3D Human Generation with Compositional Multiview Diffusion [56.12859795754579]
AdaHumanは、単一のアプリ内画像から高忠実でアニマタブルな3Dアバターを生成する新しいフレームワークである。
AdaHumanはポーズ条件付き3D共同拡散モデルと合成3DGS精製モジュールという2つの重要なイノベーションを取り入れている。
論文 参考訳(メタデータ) (2025-05-30T17:59:54Z) - 3D$^2$-Actor: Learning Pose-Conditioned 3D-Aware Denoiser for Realistic Gaussian Avatar Modeling [37.11454674584874]
ポーズ条件付き3D対応ヒューマンモデリングパイプラインである3D$2$-Actorを導入する。
実験により、3D$2$-アクターは高忠実度アバターモデリングにおいて優れ、新しいポーズに頑健に一般化することを示した。
論文 参考訳(メタデータ) (2024-12-16T09:37:52Z) - Generalizable and Animatable Gaussian Head Avatar [50.34788590904843]
本稿では,GAGAvatar(Generalizable and Animatable Gaussian Head Avatar)を提案する。
我々は、1つの前方通過で1つの画像から3次元ガウスのパラメータを生成する。
提案手法は, 従来の手法と比較して, 再現性や表現精度の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-10-10T14:29:00Z) - Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities [10.816370283498287]
本稿では,まず頭部アバターの一般化モデルを取得し,その結果をパーソナライズする「ガウスデジャヴ」(Gaussian Deja-vu)フレームワークを紹介する。
パーソナライズのために、ニューラルネットワークに頼らずに迅速に収束する学習可能な表現認識補正ブレンドマップを提案する。
最先端の3Dガウシアンヘッドアバターをフォトリアリスティックな品質で上回り、既存の方法の少なくとも4分の1のトレーニング時間を短縮する。
論文 参考訳(メタデータ) (2024-09-23T00:11:30Z) - Human-3Diffusion: Realistic Avatar Creation via Explicit 3D Consistent Diffusion Models [29.73743772971411]
人間の3次元拡散: 明示的な3次元連続拡散による現実的なアバター創造を提案する。
我々の重要な洞察は、2次元多視点拡散と3次元再構成モデルが相互に補完情報を提供するということである。
提案するフレームワークは,最先端の手法より優れ,単一のRGB画像から現実的なアバターを作成することができる。
論文 参考訳(メタデータ) (2024-06-12T17:57:25Z) - Deformable 3D Gaussian Splatting for Animatable Human Avatars [50.61374254699761]
本稿では,デジタルアバターを単一単分子配列で構築する手法を提案する。
ParDy-Humanは、リアルなダイナミックな人間のアバターの明示的なモデルを構成する。
当社のアバター学習には,Splatマスクなどの追加アノテーションが不要であり,ユーザのハードウェア上でも,フル解像度の画像を効率的に推測しながら,さまざまなバックグラウンドでトレーニングすることが可能である。
論文 参考訳(メタデータ) (2023-12-22T20:56:46Z) - DreamAvatar: Text-and-Shape Guided 3D Human Avatar Generation via
Diffusion Models [55.71306021041785]
高品質な3Dアバターを作成するためのテキスト・アンド・シェイプ・ガイドフレームワークであるDreamAvatarについて紹介する。
SMPLモデルを利用して、生成のための形状とポーズのガイダンスを提供する。
また、全体とズームインした3Dヘッドから計算した損失を共同で最適化し、一般的なマルチフェイス「Janus」問題を緩和する。
論文 参考訳(メタデータ) (2023-04-03T12:11:51Z) - AvatarGen: A 3D Generative Model for Animatable Human Avatars [108.11137221845352]
アバタージェネレーション(AvatarGen)は、様々な外観と制御可能なジオメトリーを持つ3D認識された人間の無監督世代である。
提案手法は, 高品質な外観と幾何学的モデリングにより, アニマタブルな3次元アバターを生成することができる。
シングルビュー再構成、再アニメーション、テキスト誘導合成/編集など、多くのアプリケーションに向いている。
論文 参考訳(メタデータ) (2022-11-26T15:15:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。