DA-Occ: Efficient 3D Voxel Occupancy Prediction via Directional 2D for Geometric Structure Preservation
- URL: http://arxiv.org/abs/2507.23599v1
- Date: Thu, 31 Jul 2025 14:39:31 GMT
- Title: DA-Occ: Efficient 3D Voxel Occupancy Prediction via Directional 2D for Geometric Structure Preservation
- Authors: Yuchen Zhou, Yan Luo, Xiangang Wang, Xingjian Gu, Mingzhou Lu,
- Abstract summary: Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving systems.<n>Our method involves slicing 3D voxel features to preserve complete vertical geometric information.<n>This strategy compensates for the loss of height cues in Bird's-Eye View representations, thereby maintaining the integrity of the 3D geometric structure.
- Score: 13.792614780020061
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Efficient and high-accuracy 3D occupancy prediction is crucial for ensuring the performance of autonomous driving (AD) systems. However, many current methods focus on high accuracy at the expense of real-time processing needs. To address this challenge of balancing accuracy and inference speed, we propose a directional pure 2D approach. Our method involves slicing 3D voxel features to preserve complete vertical geometric information. This strategy compensates for the loss of height cues in Bird's-Eye View (BEV) representations, thereby maintaining the integrity of the 3D geometric structure. By employing a directional attention mechanism, we efficiently extract geometric features from different orientations, striking a balance between accuracy and computational efficiency. Experimental results highlight the significant advantages of our approach for autonomous driving. On the Occ3D-nuScenes, the proposed method achieves an mIoU of 39.3% and an inference speed of 27.7 FPS, effectively balancing accuracy and efficiency. In simulations on edge devices, the inference speed reaches 14.8 FPS, further demonstrating the method's applicability for real-time deployment in resource-constrained environments.
Related papers
- ALOcc: Adaptive Lifting-based 3D Semantic Occupancy and Cost Volume-based Flow Prediction [89.89610257714006]
Existing methods prioritize higher accuracy to cater to the demands of these tasks.
We introduce a series of targeted improvements for 3D semantic occupancy prediction and flow estimation.
Our purelytemporalal architecture framework, named ALOcc, achieves an optimal tradeoff between speed and accuracy.
arXiv Detail & Related papers (2024-11-12T11:32:56Z) - OccLoff: Learning Optimized Feature Fusion for 3D Occupancy Prediction [5.285847977231642]
3D semantic occupancy prediction is crucial for ensuring the safety in autonomous driving.
Existing fusion-based occupancy methods typically involve performing a 2D-to-3D view transformation on image features.
We propose OccLoff, a framework that Learns to optimize Feature Fusion for 3D occupancy prediction.
arXiv Detail & Related papers (2024-11-06T06:34:27Z) - On Deep Learning for Geometric and Semantic Scene Understanding Using On-Vehicle 3D LiDAR [4.606106768645647]
3D LiDAR point cloud data is crucial for scene perception in computer vision, robotics, and autonomous driving.
We present DurLAR, the first high-fidelity 128-channel 3D LiDAR dataset featuring panoramic ambient (near infrared) and reflectivity imagery.
To improve the segmentation accuracy, we introduce Range-Aware Pointwise Distance Distribution (RAPiD) features and the associated RAPiD-Seg architecture.
arXiv Detail & Related papers (2024-11-01T14:01:54Z) - DELTA: Dense Efficient Long-range 3D Tracking for any video [82.26753323263009]
We introduce DELTA, a novel method that efficiently tracks every pixel in 3D space, enabling accurate motion estimation across entire videos.<n>Our approach leverages a joint global-local attention mechanism for reduced-resolution tracking, followed by a transformer-based upsampler to achieve high-resolution predictions.<n>Our method provides a robust solution for applications requiring fine-grained, long-term motion tracking in 3D space.
arXiv Detail & Related papers (2024-10-31T17:59:01Z) - PointOcc: Cylindrical Tri-Perspective View for Point-based 3D Semantic
Occupancy Prediction [72.75478398447396]
We propose a cylindrical tri-perspective view to represent point clouds effectively and comprehensively.
Considering the distance distribution of LiDAR point clouds, we construct the tri-perspective view in the cylindrical coordinate system.
We employ spatial group pooling to maintain structural details during projection and adopt 2D backbones to efficiently process each TPV plane.
arXiv Detail & Related papers (2023-08-31T17:57:17Z) - 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object
Detection on Edge for Intelligent Transportation System [28.55894241049706]
We propose a 3D harmonic loss function to relieve the pointcloud based inconsistent predictions.
Our proposed method considerably improves the performance than benchmark models.
Our code is open-source and publicly available.
arXiv Detail & Related papers (2022-11-07T10:11:48Z) - 6D Pose Estimation with Combined Deep Learning and 3D Vision Techniques
for a Fast and Accurate Object Grasping [0.19686770963118383]
Real-time robotic grasping is a priority target for highly advanced autonomous systems.
This paper proposes a novel method with a 2-stage approach that combines a fast 2D object recognition using a deep neural network.
The proposed solution has a potential to perform robustly on real-time applications, requiring both efficiency and accuracy.
arXiv Detail & Related papers (2021-11-11T15:36:55Z) - Uncertainty-Aware Camera Pose Estimation from Points and Lines [101.03675842534415]
Perspective-n-Point-and-Line (Pn$PL) aims at fast, accurate and robust camera localizations with respect to a 3D model from 2D-3D feature coordinates.
arXiv Detail & Related papers (2021-07-08T15:19:36Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Towards Fast, Accurate and Stable 3D Dense Face Alignment [73.01620081047336]
We propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability.
We present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving.
arXiv Detail & Related papers (2020-09-21T15:37:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.