Regime-Aware Conditional Neural Processes with Multi-Criteria Decision Support for Operational Electricity Price Forecasting
- URL: http://arxiv.org/abs/2508.00040v1
- Date: Thu, 31 Jul 2025 09:12:25 GMT
- Title: Regime-Aware Conditional Neural Processes with Multi-Criteria Decision Support for Operational Electricity Price Forecasting
- Authors: Abhinav Das, Stephan Schlüter,
- Abstract summary: This work integrates regime detection with conditional neural processes for 24-hour electricity price prediction in the German market.<n>We rigorously evaluate R-NP against deep neural networks (DNN) and Lasso estimated auto-regressive (LEAR) models.<n>Our proposed R-NP model emerged as the most balanced and preferred solution for 2021, 2022 and 2023.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work integrates Bayesian regime detection with conditional neural processes for 24-hour electricity price prediction in the German market. Our methodology integrates regime detection using a disentangled sticky hierarchical Dirichlet process hidden Markov model (DS-HDP-HMM) applied to daily electricity prices. Each identified regime is subsequently modeled by an independent conditional neural process (CNP), trained to learn localized mappings from input contexts to 24-dimensional hourly price trajectories, with final predictions computed as regime-weighted mixtures of these CNP outputs. We rigorously evaluate R-NP against deep neural networks (DNN) and Lasso estimated auto-regressive (LEAR) models by integrating their forecasts into diverse battery storage optimization frameworks, including price arbitrage, risk management, grid services, and cost minimization. This operational utility assessment revealed complex performance trade-offs: LEAR often yielded superior absolute profits or lower costs, while DNN showed exceptional optimality in specific cost-minimization contexts. Recognizing that raw prediction accuracy doesn't always translate to optimal operational outcomes, we employed TOPSIS as a comprehensive multi-criteria evaluation layer. Our TOPSIS analysis identified LEAR as the top-ranked model for 2021, but crucially, our proposed R-NP model emerged as the most balanced and preferred solution for 2021, 2022 and 2023.
Related papers
- Generalized Linear Bandits: Almost Optimal Regret with One-Pass Update [60.414548453838506]
We study the generalized linear bandit (GLB) problem, a contextual multi-armed bandit framework that extends the classical linear model by incorporating a non-linear link function.<n>GLBs are widely applicable to real-world scenarios, but their non-linear nature introduces significant challenges in achieving both computational and statistical efficiency.<n>We propose a jointly efficient algorithm that attains a nearly optimal regret bound with $mathcalO(1)$ time and space complexities per round.
arXiv Detail & Related papers (2025-07-16T02:24:21Z) - Supervised Optimism Correction: Be Confident When LLMs Are Sure [91.7459076316849]
We establish a novel theoretical connection between supervised fine-tuning and offline reinforcement learning.<n>We show that the widely used beam search method suffers from unacceptable over-optimism.<n>We propose Supervised Optimism Correction, which introduces a simple yet effective auxiliary loss for token-level $Q$-value estimations.
arXiv Detail & Related papers (2025-04-10T07:50:03Z) - Benign Overfitting in Out-of-Distribution Generalization of Linear Models [19.203753135860016]
We take an initial step towards understanding benign overfitting in the Out-of-Distribution (OOD) regime.<n>We provide non-asymptotic guarantees proving that benign overfitting occurs in standard ridge regression.<n>We also present theoretical results for a more general family of target covariance matrix.
arXiv Detail & Related papers (2024-12-19T02:47:39Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
We study infinite-horizon average-reward Markov decision processes (AMDPs) in the context of general function approximation.
We propose a novel algorithmic framework named Local-fitted Optimization with OPtimism (LOOP)
We show that LOOP achieves a sublinear $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret, where $d$ and $beta$ correspond to AGEC and log-covering number of the hypothesis class respectively
arXiv Detail & Related papers (2024-04-19T06:24:22Z) - End-to-End Reinforcement Learning of Koopman Models for Economic Nonlinear Model Predictive Control [45.84205238554709]
We present a method for reinforcement learning of Koopman surrogate models for optimal performance as part of (e)NMPC.
We show that the end-to-end trained models outperform those trained using system identification in (e)NMPC.
arXiv Detail & Related papers (2023-08-03T10:21:53Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
This paper aims to recover the structure of rewards and environment dynamics that underlie observed actions in a fixed, finite set of demonstrations from an expert agent.
Accurate models of expertise in executing a task has applications in safety-sensitive applications such as clinical decision making and autonomous driving.
arXiv Detail & Related papers (2023-02-15T04:14:20Z) - Predictive Accuracy of a Hybrid Generalized Long Memory Model for Short
Term Electricity Price Forecasting [0.0]
This study investigates the predictive performance of a new hybrid model based on the Generalized long memory autoregressive model (k-factor GARMA)
The performance of the proposed model is evaluated using data from Nord Pool Electricity markets.
arXiv Detail & Related papers (2022-04-18T12:21:25Z) - Convolutional-Recurrent Neural Network Proxy for Robust Optimization and
Closed-Loop Reservoir Management [0.0]
A convolutional-recurrent neural network (CNN-RNN) proxy model is developed to predict well-by-well oil and water rates.
This capability enables the estimation of the objective function and nonlinear constraint values required for robust optimization.
arXiv Detail & Related papers (2022-03-14T22:11:17Z) - Enhanced physics-constrained deep neural networks for modeling vanadium
redox flow battery [62.997667081978825]
We propose an enhanced version of the physics-constrained deep neural network (PCDNN) approach to provide high-accuracy voltage predictions.
The ePCDNN can accurately capture the voltage response throughout the charge--discharge cycle, including the tail region of the voltage discharge curve.
arXiv Detail & Related papers (2022-03-03T19:56:24Z) - Wholesale Electricity Price Forecasting using Integrated Long-term
Recurrent Convolutional Network Model [0.0]
This paper proposes an integrated long-term recurrent convolutional network (ILRCN) model to predict electricity prices.
Case studies reveal that the proposed ILRCN model is accurate and efficient in electricity price forecasting.
arXiv Detail & Related papers (2021-12-23T06:45:12Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - COVID-19 forecasting based on an improved interior search algorithm and
multi-layer feed forward neural network [0.0]
A new forecasting model is presented to analyze and forecast the confirmed cases of COVID-19 for the coming days.
The ISACL-MFNN model integrates an improved interior search algorithm (ISA) based on chaotic learning (CL) strategy into a multi-layer feed-forward neural network (MFNN)
The proposed model is investigated in the most affected countries (i.e., USA, Italy, and Spain)
arXiv Detail & Related papers (2020-04-06T12:08:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.