Anomaly detection with spiking neural networks for LHC physics
- URL: http://arxiv.org/abs/2508.00063v1
- Date: Thu, 31 Jul 2025 18:00:03 GMT
- Title: Anomaly detection with spiking neural networks for LHC physics
- Authors: Barry M. Dillon, Jim Harkin, Aqib Javed,
- Abstract summary: Anomaly detection offers a promising strategy for discovering new physics at the Large Hadron Collider (LHC)<n>This paper investigates AutoEncoders built using neuromorphic Spiking Neural Networks (SNNs) for this purpose.
- Score: 0.294944680995069
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection offers a promising strategy for discovering new physics at the Large Hadron Collider (LHC). This paper investigates AutoEncoders built using neuromorphic Spiking Neural Networks (SNNs) for this purpose. One key application is at the trigger level, where anomaly detection tools could capture signals that would otherwise be discarded by conventional selection cuts. These systems must operate under strict latency and computational constraints. SNNs are inherently well-suited for low-latency, low-memory, real-time inference, particularly on Field-Programmable Gate Arrays (FPGAs). Further gains are expected with the rapid progress in dedicated neuromorphic hardware development. Using the CMS ADC2021 dataset, we design and evaluate a simple SNN AutoEncoder architecture. Our results show that the SNN AutoEncoders are competitive with conventional AutoEncoders for LHC anomaly detection across all signal models.
Related papers
- Benchmarking Quantum Convolutional Neural Networks for Signal Classification in Simulated Gamma-Ray Burst Detection [29.259008600842517]
This study evaluates the use of Quantum Convolutional Neural Networks (QCNNs) for identifying signals resembling Gamma-Ray Bursts (GRBs)<n>We implement a hybrid quantum-classical machine learning technique using the Qiskit framework, with the QCNNs trained on a quantum simulator.<n>QCNNs showed robust performance on time-series datasets, successfully detecting GRB signals with high precision.
arXiv Detail & Related papers (2025-01-28T16:07:12Z) - Scalable Mechanistic Neural Networks for Differential Equations and Machine Learning [52.28945097811129]
We propose an enhanced neural network framework designed for scientific machine learning applications involving long temporal sequences.<n>We reduce the computational time and space complexities from cubic and quadratic with respect to the sequence length, respectively, to linear.<n>Extensive experiments demonstrate that S-MNN matches the original MNN in precision while substantially reducing computational resources.
arXiv Detail & Related papers (2024-10-08T14:27:28Z) - Decoding finger velocity from cortical spike trains with recurrent spiking neural networks [6.404492073110551]
Invasive brain-machine interfaces (BMIs) can significantly improve the life quality of motor-impaired patients.
BMIs must meet strict latency and energy constraints while providing reliable decoding performance.
We trained RSNNs to decode finger velocity from cortical spike trains of two macaque monkeys.
arXiv Detail & Related papers (2024-09-03T10:15:33Z) - Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
We present a $SigmaDelta$-low-pass RNN (lpRNN) for mapping rate-based RNNs to spiking neural networks (SNNs)
An adaptive spiking neuron model encodes signals using $SigmaDelta$-modulation and enables precise mapping.
We demonstrate the implementation of the lpRNN on Intel's neuromorphic research chip Loihi.
arXiv Detail & Related papers (2024-07-18T14:06:07Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
This paper proposes a novel and fast self-supervised solution for sparse-view CBCT reconstruction.
The desired attenuation coefficients are represented as a continuous function of 3D spatial coordinates, parameterized by a fully-connected deep neural network.
A learning-based encoder entailing hash coding is adopted to help the network capture high-frequency details.
arXiv Detail & Related papers (2022-09-29T04:06:00Z) - LL-GNN: Low Latency Graph Neural Networks on FPGAs for High Energy
Physics [45.666822327616046]
This work presents a novel reconfigurable architecture for Low Graph Neural Network (LL-GNN) designs for particle detectors.
The LL-GNN design advances the next generation of trigger systems by enabling sophisticated algorithms to process experimental data efficiently.
arXiv Detail & Related papers (2022-09-28T12:55:35Z) - Object Detection with Spiking Neural Networks on Automotive Event Data [0.0]
We propose to train spiking neural networks (SNNs) directly on data coming from event cameras to design fast and efficient automotive embedded applications.
In this paper, we conducted experiments on two automotive event datasets, establishing new state-of-the-art classification results for spiking neural networks.
arXiv Detail & Related papers (2022-05-09T14:39:47Z) - FPGA-optimized Hardware acceleration for Spiking Neural Networks [69.49429223251178]
This work presents the development of a hardware accelerator for an SNN, with off-line training, applied to an image recognition task.
The design targets a Xilinx Artix-7 FPGA, using in total around the 40% of the available hardware resources.
It reduces the classification time by three orders of magnitude, with a small 4.5% impact on the accuracy, if compared to its software, full precision counterpart.
arXiv Detail & Related papers (2022-01-18T13:59:22Z) - Two-Timescale End-to-End Learning for Channel Acquisition and Hybrid
Precoding [94.40747235081466]
We propose an end-to-end deep learning-based joint transceiver design algorithm for millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) systems.
We develop a DNN architecture that maps the received pilots into feedback bits at the receiver, and then further maps the feedback bits into the hybrid precoder at the transmitter.
arXiv Detail & Related papers (2021-10-22T20:49:02Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.