Efficient and simple Gibbs state preparation of the 2D toric code via duality to classical Ising chains
- URL: http://arxiv.org/abs/2508.00126v1
- Date: Thu, 31 Jul 2025 19:25:13 GMT
- Title: Efficient and simple Gibbs state preparation of the 2D toric code via duality to classical Ising chains
- Authors: Pablo Páez-Velasco, Niclas Schilling, Samuel O. Scalet, Frank Verstraete, Ángela Capel,
- Abstract summary: We introduce the notion of inequality-depth duality transformations, which relates two sets of operator algebras through a conjugation by a poly-depth quantum circuit.<n>We make use of this to construct efficient Gibbs samplers for a variety of interesting quantum Hamiltonians as they are poly-depth dual to classical Hamiltonians.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce the notion of polynomial-depth duality transformations, which relates two sets of operator algebras through a conjugation by a poly-depth quantum circuit, and make use of this to construct efficient Gibbs samplers for a variety of interesting quantum Hamiltonians as they are poly-depth dual to classical Hamiltonians. This is for example the case for the 2D toric code, which is demonstrated to be poly-depth dual to two decoupled classical Ising spin chains for any system size, and we give evidence that such dualities hold for a wide class of stabilizer Hamiltonians. Additionally, we extend the above notion of duality to Lindbladians in order to show that mixing times and other quantities such as the spectral gap or the modified logarithmic Sobolev inequality are preserved under duality.
Related papers
- Constructive interference at the edge of quantum ergodic dynamics [116.94795372054381]
We characterize ergodic dynamics using the second-order out-of-time-order correlators, OTOC$(2)$.<n>In contrast to dynamics without time reversal, OTOC$(2)$ are observed to remain sensitive to the underlying dynamics at long time scales.
arXiv Detail & Related papers (2025-06-11T21:29:23Z) - Low-depth unitary quantum circuits for dualities in one-dimensional
quantum lattice models [0.0]
We show how to turn dualities in (1+1)d quantum lattice models into unitary linear depth quantum circuits.
The resulting circuits can for instance be used to efficiently prepare short- and long-range entangled states.
arXiv Detail & Related papers (2023-11-02T17:53:38Z) - Classification of dynamical Lie algebras for translation-invariant
2-local spin systems in one dimension [44.41126861546141]
We provide a classification of Lie algebras generated by translation-invariant 2-local spin chain Hamiltonians.
We consider chains with open and periodic boundary conditions and find 17 unique dynamical Lie algebras.
In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches.
arXiv Detail & Related papers (2023-09-11T17:59:41Z) - Vectorization of the density matrix and quantum simulation of the von
Neumann equation of time-dependent Hamiltonians [65.268245109828]
We develop a general framework to linearize the von-Neumann equation rendering it in a suitable form for quantum simulations.
We show that one of these linearizations of the von-Neumann equation corresponds to the standard case in which the state vector becomes the column stacked elements of the density matrix.
A quantum algorithm to simulate the dynamics of the density matrix is proposed.
arXiv Detail & Related papers (2023-06-14T23:08:51Z) - Expanding the reach of quantum optimization with fermionic embeddings [2.378735224874938]
In this work, we establish a natural embedding for this class of LNCG problems onto a fermionic Hamiltonian.
We show that our quantum representation requires only a linear number of qubits.
We provide evidence that this rounded quantum relaxation can produce high-quality approximations.
arXiv Detail & Related papers (2023-01-04T19:00:01Z) - Growth of entanglement of generic states under dual-unitary dynamics [77.34726150561087]
Dual-unitary circuits are a class of locally-interacting quantum many-body systems.
In particular, they admit a class of solvable" initial states for which, in the thermodynamic limit, one can access the full non-equilibrium dynamics.
We show that in this case the entanglement increment during a time step is sub-maximal for finite times, however, it approaches the maximal value in the infinite-time limit.
arXiv Detail & Related papers (2022-07-29T18:20:09Z) - Dual Exponential Coupled Cluster Theory: Unitary Adaptation,
Implementation in the Variational Quantum Eigensolver Framework and Pilot
Applications [0.0]
We have developed a unitary variant of a double exponential coupled cluster theory.
The method relies upon the nontrivial action of a unitary, containing a set of rank-two scattering operators.
We have shown that all our schemes can perform uniformly well throughout the molecular potential energy surface.
arXiv Detail & Related papers (2022-07-12T05:10:58Z) - Quantum algorithms for grid-based variational time evolution [36.136619420474766]
We propose a variational quantum algorithm for performing quantum dynamics in first quantization.
Our simulations exhibit the previously observed numerical instabilities of variational time propagation approaches.
arXiv Detail & Related papers (2022-03-04T19:00:45Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From dual-unitary to quantum Bernoulli circuits: Role of the entangling
power in constructing a quantum ergodic hierarchy [0.0]
We study the apex of a putative quantum ergodic hierarchy which is Bernoulli.
We derive a condition based on the entangling power $e_p(U)$ of the basic two-particle unitary building block.
We construct a coupled quantum cat map which is dual-unitary for all local dimensions and a 2-unitary or perfect tensor for odd local dimensions.
arXiv Detail & Related papers (2021-01-12T16:21:50Z) - Variational Quantum Eigensolver for Approximate Diagonalization of
Downfolded Hamiltonians using Generalized Unitary Coupled Cluster Ansatz [0.0]
Generalized Unitary Coupled Cluster (GUCC) is a formalism for the diagonalization of downfolded/effective Hamiltonians in active spaces.
We consider their form defined by freezing core orbitals, which enables us to deal with larger systems.
We consider various solvers to identify solutions of the GUCC equations.
arXiv Detail & Related papers (2020-11-03T20:03:51Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.