INSPIRE-GNN: Intelligent Sensor Placement to Improve Sparse Bicycling Network Prediction via Reinforcement Learning Boosted Graph Neural Networks
- URL: http://arxiv.org/abs/2508.00141v1
- Date: Thu, 31 Jul 2025 20:00:35 GMT
- Title: INSPIRE-GNN: Intelligent Sensor Placement to Improve Sparse Bicycling Network Prediction via Reinforcement Learning Boosted Graph Neural Networks
- Authors: Mohit Gupta, Debjit Bhowmick, Rhys Newbury, Meead Saberi, Shirui Pan, Ben Beck,
- Abstract summary: INSPIRE-GNN is a novel Reinforcement Learning-boosted hybrid Graph Neural Network (GNN) framework designed to optimize sensor placement and improve link-level bicycling volume estimation in data-sparse environments.<n>Our framework outperforms traditional methods for sensor placement such as betweenness centrality, closeness, observed bicycling activity and random placement, across key metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE)<n>Our experiments benchmark INSPIRE-GNN against standard machine learning and deep learning models in the bicycle volume estimation performance, underscoring its effectiveness
- Score: 51.76364085699241
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate link-level bicycling volume estimation is essential for sustainable urban transportation planning. However, many cities face significant challenges of high data sparsity due to limited bicycling count sensor coverage. To address this issue, we propose INSPIRE-GNN, a novel Reinforcement Learning (RL)-boosted hybrid Graph Neural Network (GNN) framework designed to optimize sensor placement and improve link-level bicycling volume estimation in data-sparse environments. INSPIRE-GNN integrates Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT) with a Deep Q-Network (DQN)-based RL agent, enabling a data-driven strategic selection of sensor locations to maximize estimation performance. Applied to Melbourne's bicycling network, comprising 15,933 road segments with sensor coverage on only 141 road segments (99% sparsity) - INSPIRE-GNN demonstrates significant improvements in volume estimation by strategically selecting additional sensor locations in deployments of 50, 100, 200 and 500 sensors. Our framework outperforms traditional heuristic methods for sensor placement such as betweenness centrality, closeness centrality, observed bicycling activity and random placement, across key metrics such as Mean Squared Error (MSE), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Furthermore, our experiments benchmark INSPIRE-GNN against standard machine learning and deep learning models in the bicycle volume estimation performance, underscoring its effectiveness. Our proposed framework provides transport planners actionable insights to effectively expand sensor networks, optimize sensor placement and maximize volume estimation accuracy and reliability of bicycling data for informed transportation planning decisions.
Related papers
- BikeVAE-GNN: A Variational Autoencoder-Augmented Hybrid Graph Neural Network for Sparse Bicycle Volume Estimation [15.126643708837712]
BikeVAE-GNN is a novel dual-task framework augmenting a Hybrid Graph Neural Network (GNN) with Variational Autoencoder (VAE)<n>BikeVAE-GNN simultaneously performs - regression for bicycling volume estimation and classification for bicycling traffic level categorization.<n>Our experiments show that BikeVAE-GNN outperforms machine learning and baseline GNN models, achieving a mean absolute error (MAE) of 30.82 bicycles per day, accuracy of 99% and F1-score of 0.99.
arXiv Detail & Related papers (2025-07-18T09:18:02Z) - Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction [0.15978270011184256]
We explore and adapt semi-decentralized training techniques for Spatiotemporal Graph-Temporal Neural Networks (ST-GNNs) in smart mobility domain.<n>We implement a simulation framework where sensors are grouped by proximity into multiple cloudlets.<n>We show that semi-decentralized setups are comparable to centralized approaches in performance metrics.
arXiv Detail & Related papers (2024-12-04T10:20:21Z) - Evaluating the effects of Data Sparsity on the Link-level Bicycling Volume Estimation: A Graph Convolutional Neural Network Approach [54.84957282120537]
We present the first study to utilize a Graph Convolutional Network (GCN) architecture to model link-level bicycling volumes.<n>We benchmark it against traditional machine learning models, such as linear regression, support vector machines, and random forest.<n>Our results show that the GCN model outperforms these traditional models in predicting Annual Average Daily Bicycle (AADB) counts.
arXiv Detail & Related papers (2024-10-11T04:53:18Z) - Positional Encoder Graph Quantile Neural Networks for Geographic Data [4.277516034244117]
We propose a novel framework that combines PE-GNNs with Quantile Neural Networks, partially monotonic neural blocks, and post-hoc recalibration techniques.<n>The PE-GQNN enables flexible and robust conditional density estimation with minimal assumptions about the target distribution, and it extends naturally to tasks beyond spatial data.
arXiv Detail & Related papers (2024-09-27T16:02:12Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
We propose a dynamic sensor selection approach for deep neural networks (DNNs)
It is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset.
We show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit.
arXiv Detail & Related papers (2023-08-16T14:04:50Z) - Automotive Object Detection via Learning Sparse Events by Spiking Neurons [20.930277906912394]
Spiking Neural Networks (SNNs) provide a temporal representation that is inherently aligned with event-based data.
We present a specialized spiking feature pyramid network (SpikeFPN) optimized for automotive event-based object detection.
arXiv Detail & Related papers (2023-07-24T15:47:21Z) - Environmental Sensor Placement with Convolutional Gaussian Neural
Processes [65.13973319334625]
It is challenging to place sensors in a way that maximises the informativeness of their measurements, particularly in remote regions like Antarctica.
Probabilistic machine learning models can suggest informative sensor placements by finding sites that maximally reduce prediction uncertainty.
This paper proposes using a convolutional Gaussian neural process (ConvGNP) to address these issues.
arXiv Detail & Related papers (2022-11-18T17:25:14Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Deep Learning based Pedestrian Inertial Navigation: Methods, Dataset and
On-Device Inference [49.88536971774444]
Inertial measurements units (IMUs) are small, cheap, energy efficient, and widely employed in smart devices and mobile robots.
Exploiting inertial data for accurate and reliable pedestrian navigation supports is a key component for emerging Internet-of-Things applications and services.
We present and release the Oxford Inertial Odometry dataset (OxIOD), a first-of-its-kind public dataset for deep learning based inertial navigation research.
arXiv Detail & Related papers (2020-01-13T04:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.