Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
- URL: http://arxiv.org/abs/2508.00169v1
- Date: Thu, 31 Jul 2025 21:32:21 GMT
- Title: Robust 3D Object Detection using Probabilistic Point Clouds from Single-Photon LiDARs
- Authors: Bhavya Goyal, Felipe Gutierrez-Barragan, Wei Lin, Andreas Velten, Yin Li, Mohit Gupta,
- Abstract summary: LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks.<n>Modern LiDARs face challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds.<n>We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute.
- Score: 29.92823252627008
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: LiDAR-based 3D sensors provide point clouds, a canonical 3D representation used in various scene understanding tasks. Modern LiDARs face key challenges in several real-world scenarios, such as long-distance or low-albedo objects, producing sparse or erroneous point clouds. These errors, which are rooted in the noisy raw LiDAR measurements, get propagated to downstream perception models, resulting in potentially severe loss of accuracy. This is because conventional 3D processing pipelines do not retain any uncertainty information from the raw measurements when constructing point clouds. We propose Probabilistic Point Clouds (PPC), a novel 3D scene representation where each point is augmented with a probability attribute that encapsulates the measurement uncertainty (or confidence) in the raw data. We further introduce inference approaches that leverage PPC for robust 3D object detection; these methods are versatile and can be used as computationally lightweight drop-in modules in 3D inference pipelines. We demonstrate, via both simulations and real captures, that PPC-based 3D inference methods outperform several baselines using LiDAR as well as camera-LiDAR fusion models, across challenging indoor and outdoor scenarios involving small, distant, and low-albedo objects, as well as strong ambient light. Our project webpage is at https://bhavyagoyal.github.io/ppc .
Related papers
- VFMM3D: Releasing the Potential of Image by Vision Foundation Model for Monocular 3D Object Detection [80.62052650370416]
monocular 3D object detection holds significant importance across various applications, including autonomous driving and robotics.
In this paper, we present VFMM3D, an innovative framework that leverages the capabilities of Vision Foundation Models (VFMs) to accurately transform single-view images into LiDAR point cloud representations.
arXiv Detail & Related papers (2024-04-15T03:12:12Z) - Sparse Points to Dense Clouds: Enhancing 3D Detection with Limited LiDAR Data [68.18735997052265]
We propose a balanced approach that combines the advantages of monocular and point cloud-based 3D detection.
Our method requires only a small number of 3D points, that can be obtained from a low-cost, low-resolution sensor.
The accuracy of 3D detection improves by 20% compared to the state-of-the-art monocular detection methods.
arXiv Detail & Related papers (2024-04-10T03:54:53Z) - Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object
Detection [0.7234862895932991]
Recent advances introduced pseudo-LiDAR, i.e., synthetic dense point clouds, using additional modalities such as cameras to enhance 3D object detection.
We present a novel LiDAR-only framework that augments raw scans with dense pseudo point clouds by relying on LiDAR sensors and scene semantics.
arXiv Detail & Related papers (2023-09-16T09:18:47Z) - 3D-VField: Learning to Adversarially Deform Point Clouds for Robust 3D
Object Detection [111.32054128362427]
In safety-critical settings, robustness on out-of-distribution and long-tail samples is fundamental to circumvent dangerous issues.
We substantially improve the generalization of 3D object detectors to out-of-domain data by taking into account deformed point clouds during training.
We propose and share open source CrashD: a synthetic dataset of realistic damaged and rare cars.
arXiv Detail & Related papers (2021-12-09T08:50:54Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - RoIFusion: 3D Object Detection from LiDAR and Vision [7.878027048763662]
We propose a novel fusion algorithm by projecting a set of 3D Region of Interests (RoIs) from the point clouds to the 2D RoIs of the corresponding the images.
Our approach achieves state-of-the-art performance on the KITTI 3D object detection challenging benchmark.
arXiv Detail & Related papers (2020-09-09T20:23:27Z) - End-to-End Pseudo-LiDAR for Image-Based 3D Object Detection [62.34374949726333]
Pseudo-LiDAR (PL) has led to a drastic reduction in the accuracy gap between methods based on LiDAR sensors and those based on cheap stereo cameras.
PL combines state-of-the-art deep neural networks for 3D depth estimation with those for 3D object detection by converting 2D depth map outputs to 3D point cloud inputs.
We introduce a new framework based on differentiable Change of Representation (CoR) modules that allow the entire PL pipeline to be trained end-to-end.
arXiv Detail & Related papers (2020-04-07T02:18:38Z) - Boundary-Aware Dense Feature Indicator for Single-Stage 3D Object
Detection from Point Clouds [32.916690488130506]
We propose a universal module that helps 3D detectors focus on the densest region of the point clouds in a boundary-aware manner.
Experiments on KITTI dataset show that DENFI improves the performance of the baseline single-stage detector remarkably.
arXiv Detail & Related papers (2020-04-01T01:21:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.