The SPACE of AI: Real-World Lessons on AI's Impact on Developers
- URL: http://arxiv.org/abs/2508.00178v1
- Date: Thu, 31 Jul 2025 21:45:54 GMT
- Title: The SPACE of AI: Real-World Lessons on AI's Impact on Developers
- Authors: Brian Houck, Travis Lowdermilk, Cody Beyer, Steven Clarke, Ben Hanrahan,
- Abstract summary: We study how developers perceive AI's influence across the dimensions of the SPACE framework: Satisfaction, Performance, Activity, Collaboration and Efficiency.<n>We find that AI is broadly adopted and widely seen as enhancing productivity, particularly for routine tasks.<n>Developers report increased efficiency and satisfaction, with less evidence of impact on collaboration.
- Score: 0.807084206814932
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As artificial intelligence (AI) tools become increasingly embedded in software development workflows, questions persist about their true impact on developer productivity and experience. This paper presents findings from a mixed-methods study examining how developers perceive AI's influence across the dimensions of the SPACE framework: Satisfaction, Performance, Activity, Collaboration and Efficiency. Drawing on survey responses from over 500 developers and qualitative insights from interviews and observational studies, we find that AI is broadly adopted and widely seen as enhancing productivity, particularly for routine tasks. However, the benefits vary, depending on task complexity, individual usage patterns, and team-level adoption. Developers report increased efficiency and satisfaction, with less evidence of impact on collaboration. Organizational support and peer learning play key roles in maximizing AI's value. These findings suggest that AI is augmenting developers rather than replacing them, and that effective integration depends as much on team culture and support structures as on the tools themselves. We conclude with practical recommendations for teams, organizations and researchers seeking to harness AI's potential in software engineering.
Related papers
- How Software Engineers Engage with AI: A Pragmatic Process Model and Decision Framework Grounded in Industry Observations [1.516251872371896]
GitHub Copilot and ChatGPT have given rise to "vibe coding"<n>This paper presents two complementary contributions.<n>First, a pragmatic process model capturing real-world AI-assisted SE activities, including prompt design, inspection, fallback, and refinement.<n>Second, a 2D decision framework that could help developers reason about trade-offs between effort saved and output quality.
arXiv Detail & Related papers (2025-07-23T21:00:21Z) - Operationalizing AI for Good: Spotlight on Deployment and Integration of AI Models in Humanitarian Work [52.96150571365764]
We share details about the close collaboration with a humanitarian-to-humanitarian (H2H) organization.<n>We discuss how to deploy the AI model in a resource-constrained environment, and how to maintain it for continuous performance updates.
arXiv Detail & Related papers (2025-07-21T17:30:38Z) - Bridging the Gap: Integrating Ethics and Environmental Sustainability in AI Research and Practice [57.94036023167952]
We argue that the efforts aiming to study AI's ethical ramifications should be made in tandem with those evaluating its impacts on the environment.<n>We propose best practices to better integrate AI ethics and sustainability in AI research and practice.
arXiv Detail & Related papers (2025-04-01T13:53:11Z) - How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
We propose a taxonomy of interaction types between developers and AI tools, identifying eleven distinct interaction types.<n>Building on this taxonomy, we outline a research agenda focused on optimizing AI interactions, improving developer control, and addressing trust and usability challenges in AI-assisted development.
arXiv Detail & Related papers (2025-01-15T12:53:49Z) - Towards Decoding Developer Cognition in the Age of AI Assistants [9.887133861477233]
We propose a controlled observational study combining physiological measurements (EEG and eye tracking) with interaction data to examine developers' use of AI-assisted programming tools.<n>We will recruit professional developers to complete programming tasks both with and without AI assistance while measuring their cognitive load and task completion time.
arXiv Detail & Related papers (2025-01-05T23:25:21Z) - How Performance Pressure Influences AI-Assisted Decision Making [57.53469908423318]
We show how pressure and explainable AI (XAI) techniques interact with AI advice-taking behavior.<n>Our results show complex interaction effects, with different combinations of pressure and XAI techniques either improving or worsening AI advice taking behavior.
arXiv Detail & Related papers (2024-10-21T22:39:52Z) - The Evolution of Information Seeking in Software Development: Understanding the Role and Impact of AI Assistants [9.887133861477233]
We conducted a mixed-method study to understand AI-assisted information seeking behavior of practitioners and its impact on their perceived productivity and skill development.<n>We found that developers are increasingly using AI tools to support their information seeking, citing increased efficiency as a key benefit.<n>Our efforts have implications for the effective integration of AI tools into developer as information retrieval systems and learning aids.
arXiv Detail & Related papers (2024-08-07T18:27:13Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Beyond Recommender: An Exploratory Study of the Effects of Different AI
Roles in AI-Assisted Decision Making [48.179458030691286]
We examine three AI roles: Recommender, Analyzer, and Devil's Advocate.
Our results show each role's distinct strengths and limitations in task performance, reliance appropriateness, and user experience.
These insights offer valuable implications for designing AI assistants with adaptive functional roles according to different situations.
arXiv Detail & Related papers (2024-03-04T07:32:28Z) - In-IDE Human-AI Experience in the Era of Large Language Models; A
Literature Review [2.6703221234079946]
The study of in-IDE Human-AI Experience is critical in understanding how these AI tools are transforming the software development process.
We conducted a literature review to study the current state of in-IDE Human-AI Experience research.
arXiv Detail & Related papers (2024-01-19T14:55:51Z) - AI for IT Operations (AIOps) on Cloud Platforms: Reviews, Opportunities
and Challenges [60.56413461109281]
Artificial Intelligence for IT operations (AIOps) aims to combine the power of AI with the big data generated by IT Operations processes.
We discuss in depth the key types of data emitted by IT Operations activities, the scale and challenges in analyzing them, and where they can be helpful.
We categorize the key AIOps tasks as - incident detection, failure prediction, root cause analysis and automated actions.
arXiv Detail & Related papers (2023-04-10T15:38:12Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.