SparseRecon: Neural Implicit Surface Reconstruction from Sparse Views with Feature and Depth Consistencies
- URL: http://arxiv.org/abs/2508.00366v1
- Date: Fri, 01 Aug 2025 06:51:32 GMT
- Title: SparseRecon: Neural Implicit Surface Reconstruction from Sparse Views with Feature and Depth Consistencies
- Authors: Liang Han, Xu Zhang, Haichuan Song, Kanle Shi, Yu-Shen Liu, Zhizhong Han,
- Abstract summary: We propose SparseRecon, a novel neural implicit reconstruction method for sparse views with volume rendering-based feature consistency and uncertainty-guided depth constraint.<n>We show that our method outperforms the state-of-the-art methods, which can produce high-quality geometry with sparse-view input.
- Score: 48.99420012507374
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Surface reconstruction from sparse views aims to reconstruct a 3D shape or scene from few RGB images. The latest methods are either generalization-based or overfitting-based. However, the generalization-based methods do not generalize well on views that were unseen during training, while the reconstruction quality of overfitting-based methods is still limited by the limited geometry clues. To address this issue, we propose SparseRecon, a novel neural implicit reconstruction method for sparse views with volume rendering-based feature consistency and uncertainty-guided depth constraint. Firstly, we introduce a feature consistency loss across views to constrain the neural implicit field. This design alleviates the ambiguity caused by insufficient consistency information of views and ensures completeness and smoothness in the reconstruction results. Secondly, we employ an uncertainty-guided depth constraint to back up the feature consistency loss in areas with occlusion and insignificant features, which recovers geometry details for better reconstruction quality. Experimental results demonstrate that our method outperforms the state-of-the-art methods, which can produce high-quality geometry with sparse-view input, especially in the scenarios with small overlapping views. Project page: https://hanl2010.github.io/SparseRecon/.
Related papers
- Decompositional Neural Scene Reconstruction with Generative Diffusion Prior [64.71091831762214]
Decompositional reconstruction of 3D scenes, with complete shapes and detailed texture, is intriguing for downstream applications.<n>Recent approaches incorporate semantic or geometric regularization to address this issue, but they suffer significant degradation in underconstrained areas.<n>We propose DP-Recon, which employs diffusion priors in the form of Score Distillation Sampling (SDS) to optimize the neural representation of each individual object under novel views.
arXiv Detail & Related papers (2025-03-19T02:11:31Z) - GURecon: Learning Detailed 3D Geometric Uncertainties for Neural Surface Reconstruction [46.32074326890457]
We present a novel framework, GURecon, which establishes a geometric uncertainty field for the neural surface based on geometric consistency.<n>Experiments on various datasets demonstrate the superiority of GURecon in modeling 3D geometric uncertainty.
arXiv Detail & Related papers (2024-12-19T15:15:03Z) - PVP-Recon: Progressive View Planning via Warping Consistency for Sparse-View Surface Reconstruction [49.7580491592023]
We propose PVP-Recon, a novel and effective sparse-view surface reconstruction method.
PVP-Recon starts initial surface reconstruction with as few as 3 views and progressively adds new views.
This progressive view planning progress is interleaved with a neural SDF-based reconstruction module.
arXiv Detail & Related papers (2024-09-09T10:06:34Z) - NeuSurf: On-Surface Priors for Neural Surface Reconstruction from Sparse
Input Views [41.03837477483364]
We propose a novel sparse view reconstruction framework that leverages on-surface priors to achieve highly faithful surface reconstruction.
Specifically, we design several constraints on global geometry alignment and local geometry refinement for jointly optimizing coarse shapes and fine details.
The experimental results with DTU and BlendedMVS datasets in two prevalent sparse settings demonstrate significant improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-12-21T16:04:45Z) - Improving Neural Indoor Surface Reconstruction with Mask-Guided Adaptive
Consistency Constraints [0.6749750044497732]
We propose a two-stage training process, decouple view-dependent and view-independent colors, and leverage two novel consistency constraints to enhance detail reconstruction performance without requiring extra priors.
Experiments on synthetic and real-world datasets show the capability of reducing the interference from prior estimation errors.
arXiv Detail & Related papers (2023-09-18T13:05:23Z) - Robust Geometry-Preserving Depth Estimation Using Differentiable
Rendering [93.94371335579321]
We propose a learning framework that trains models to predict geometry-preserving depth without requiring extra data or annotations.
Comprehensive experiments underscore our framework's superior generalization capabilities.
Our innovative loss functions empower the model to autonomously recover domain-specific scale-and-shift coefficients.
arXiv Detail & Related papers (2023-09-18T12:36:39Z) - Depth-NeuS: Neural Implicit Surfaces Learning for Multi-view
Reconstruction Based on Depth Information Optimization [6.493546601668505]
Methods for neural surface representation and rendering, for example NeuS, have shown that learning neural implicit surfaces through volume rendering is becoming increasingly popular.
Existing methods lack a direct representation of depth information, which makes object reconstruction unrestricted by geometric features.
This is because existing methods only use surface normals to represent implicit surfaces without using depth information.
We propose a neural implicit surface learning method called Depth-NeuS based on depth information optimization for multi-view reconstruction.
arXiv Detail & Related papers (2023-03-30T01:19:27Z) - Recovering Fine Details for Neural Implicit Surface Reconstruction [3.9702081347126943]
We present D-NeuS, a volume rendering neural implicit surface reconstruction method capable to recover fine geometry details.
We impose multi-view feature consistency on the surface points, derived by interpolating SDF zero-crossings from sampled points along rays.
Our method reconstructs high-accuracy surfaces with details, and outperforms the state of the art.
arXiv Detail & Related papers (2022-11-21T10:06:09Z) - NeuS: Learning Neural Implicit Surfaces by Volume Rendering for
Multi-view Reconstruction [88.02850205432763]
We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inputs.
Existing neural surface reconstruction approaches, such as DVR and IDR, require foreground mask as supervision.
We observe that the conventional volume rendering method causes inherent geometric errors for surface reconstruction.
We propose a new formulation that is free of bias in the first order of approximation, thus leading to more accurate surface reconstruction even without the mask supervision.
arXiv Detail & Related papers (2021-06-20T12:59:42Z) - Multi-view 3D Reconstruction of a Texture-less Smooth Surface of Unknown
Generic Reflectance [86.05191217004415]
Multi-view reconstruction of texture-less objects with unknown surface reflectance is a challenging task.
This paper proposes a simple and robust solution to this problem based on a co-light scanner.
arXiv Detail & Related papers (2021-05-25T01:28:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.