Decouple before Align: Visual Disentanglement Enhances Prompt Tuning
- URL: http://arxiv.org/abs/2508.00395v1
- Date: Fri, 01 Aug 2025 07:46:00 GMT
- Title: Decouple before Align: Visual Disentanglement Enhances Prompt Tuning
- Authors: Fei Zhang, Tianfei Zhou, Jiangchao Yao, Ya Zhang, Ivor W. Tsang, Yanfeng Wang,
- Abstract summary: Prompt tuning (PT) has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models.<n>This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context.<n>We propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept.
- Score: 85.91474962071452
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Prompt tuning (PT), as an emerging resource-efficient fine-tuning paradigm, has showcased remarkable effectiveness in improving the task-specific transferability of vision-language models. This paper delves into a previously overlooked information asymmetry issue in PT, where the visual modality mostly conveys more context than the object-oriented textual modality. Correspondingly, coarsely aligning these two modalities could result in the biased attention, driving the model to merely focus on the context area. To address this, we propose DAPT, an effective PT framework based on an intuitive decouple-before-align concept. First, we propose to explicitly decouple the visual modality into the foreground and background representation via exploiting coarse-and-fine visual segmenting cues, and then both of these decoupled patterns are aligned with the original foreground texts and the hand-crafted background classes, thereby symmetrically strengthening the modal alignment. To further enhance the visual concentration, we propose a visual pull-push regularization tailored for the foreground-background patterns, directing the original visual representation towards unbiased attention on the region-of-interest object. We demonstrate the power of architecture-free DAPT through few-shot learning, base-to-novel generalization, and data-efficient learning, all of which yield superior performance across prevailing benchmarks. Our code will be released at https://github.com/Ferenas/DAPT.
Related papers
- Top-Down Compression: Revisit Efficient Vision Token Projection for Visual Instruction Tuning [70.57180215148125]
Visual instruction tuning aims to enable large language models to comprehend the visual world.<n>Existing methods often grapple with the intractable trade-off between accuracy and efficiency.<n>We present LLaVA-Meteor, a novel approach that strategically compresses visual tokens without compromising core information.
arXiv Detail & Related papers (2025-05-17T10:22:29Z) - Re-Align: Aligning Vision Language Models via Retrieval-Augmented Direct Preference Optimization [18.855378039713678]
Large Vision Language Models (VLMs) are prone to significant hallucinations, particularly in the form of cross-modal inconsistencies.<n>We introduce Re-Align, a novel alignment framework that leverages image retrieval to construct a dual-preference dataset.<n>We also introduce rDPO, an extension of the standard direct preference optimization that incorporates an additional visual preference objective during fine-tuning.
arXiv Detail & Related papers (2025-02-18T18:59:57Z) - VeCAF: Vision-language Collaborative Active Finetuning with Training Objective Awareness [56.87603097348203]
VeCAF uses labels and natural language annotations to perform parametric data selection for PVM finetuning.
VeCAF incorporates the finetuning objective to select significant data points that effectively guide the PVM towards faster convergence.
On ImageNet, VeCAF uses up to 3.3x less training batches to reach the target performance compared to full finetuning.
arXiv Detail & Related papers (2024-01-15T17:28:37Z) - Bridging Modality Gap for Visual Grounding with Effecitve Cross-modal Distillation [2.104191333263349]
Current visual grounding methods leverage pre-trained visual and language backbones independently to obtain visual features and linguistic features.
This problem arises from the domain gap between the single-modal pre-training backbones used in current visual grounding methods.
We propose an Empowering Pre-trained Model for Visual Grounding framework, which distills a multimodal pre-trained model to guide the visual grounding task.
arXiv Detail & Related papers (2023-12-29T15:32:11Z) - Harnessing Diffusion Models for Visual Perception with Meta Prompts [68.78938846041767]
We propose a simple yet effective scheme to harness a diffusion model for visual perception tasks.
We introduce learnable embeddings (meta prompts) to the pre-trained diffusion models to extract proper features for perception.
Our approach achieves new performance records in depth estimation tasks on NYU depth V2 and KITTI, and in semantic segmentation task on CityScapes.
arXiv Detail & Related papers (2023-12-22T14:40:55Z) - Vision-Enhanced Semantic Entity Recognition in Document Images via
Visually-Asymmetric Consistency Learning [19.28860833813788]
Existing models commonly train a visual encoder with weak cross-modal supervision signals.
We propose a novel textbfVisually-textbfAsymmetric cotextbfNsistentextbfCy textbfLearning (textscVancl) approach to capture fine-grained visual and layout features.
arXiv Detail & Related papers (2023-10-23T10:37:22Z) - VS-TransGRU: A Novel Transformer-GRU-based Framework Enhanced by
Visual-Semantic Fusion for Egocentric Action Anticipation [33.41226268323332]
Egocentric action anticipation is a challenging task that aims to make advanced predictions of future actions in the first-person view.
Most existing methods focus on improving the model architecture and loss function based on the visual input and recurrent neural network.
We propose a novel visual-semantic fusion enhanced and Transformer GRU-based action anticipation framework.
arXiv Detail & Related papers (2023-07-08T06:49:54Z) - Fine-Grained Semantically Aligned Vision-Language Pre-Training [151.7372197904064]
Large-scale vision-language pre-training has shown impressive advances in a wide range of downstream tasks.
Existing methods mainly model the cross-modal alignment by the similarity of the global representations of images and texts.
We introduce LO, a fine-grained semantically aLigned visiOn-langUage PrE-training framework, which learns fine-grained semantic alignment from the novel perspective of game-theoretic interactions.
arXiv Detail & Related papers (2022-08-04T07:51:48Z) - Deep Semantic Matching with Foreground Detection and Cycle-Consistency [103.22976097225457]
We address weakly supervised semantic matching based on a deep network.
We explicitly estimate the foreground regions to suppress the effect of background clutter.
We develop cycle-consistent losses to enforce the predicted transformations across multiple images to be geometrically plausible and consistent.
arXiv Detail & Related papers (2020-03-31T22:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.