論文の概要: HyPCV-Former: Hyperbolic Spatio-Temporal Transformer for 3D Point Cloud Video Anomaly Detection
- arxiv url: http://arxiv.org/abs/2508.00473v1
- Date: Fri, 01 Aug 2025 09:50:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.822274
- Title: HyPCV-Former: Hyperbolic Spatio-Temporal Transformer for 3D Point Cloud Video Anomaly Detection
- Title(参考訳): HyPCV-Former:3Dポイントクラウドビデオ異常検出のための双曲時変器
- Authors: Jiaping Cao, Kangkang Zhou, Juan Du,
- Abstract要約: HyV-Formerは、複数の異常カテゴリにわたる最先端の異常検出を実現し、TIMoデータセットは7%改善され、DADデータセットは5.6%向上した。
- 参考スコア(独自算出の注目度): 1.475698751142657
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Video anomaly detection is a fundamental task in video surveillance, with broad applications in public safety and intelligent monitoring systems. Although previous methods leverage Euclidean representations in RGB or depth domains, such embeddings are inherently limited in capturing hierarchical event structures and spatio-temporal continuity. To address these limitations, we propose HyPCV-Former, a novel hyperbolic spatio-temporal transformer for anomaly detection in 3D point cloud videos. Our approach first extracts per-frame spatial features from point cloud sequences via point cloud extractor, and then embeds them into Lorentzian hyperbolic space, which better captures the latent hierarchical structure of events. To model temporal dynamics, we introduce a hyperbolic multi-head self-attention (HMHA) mechanism that leverages Lorentzian inner products and curvature-aware softmax to learn temporal dependencies under non-Euclidean geometry. Our method performs all feature transformations and anomaly scoring directly within full Lorentzian space rather than via tangent space approximation. Extensive experiments demonstrate that HyPCV-Former achieves state-of-the-art performance across multiple anomaly categories, with a 7\% improvement on the TIMo dataset and a 5.6\% gain on the DAD dataset compared to benchmarks. The code will be released upon paper acceptance.
- Abstract(参考訳): ビデオ異常検出はビデオ監視の基本的な課題であり、公共の安全とインテリジェントな監視システムに広く応用されている。
従来の方法では、RGBや深度領域におけるユークリッド表現を利用するが、そのような埋め込みは本質的に階層的な事象構造と時空間連続性を捉えることに制限されている。
これらの制約に対処するため、3Dポイントクラウドビデオにおける異常検出のための新しい双曲型時空間変換器HyPCV-Formerを提案する。
提案手法では,まず点雲抽出器を用いて点雲列からフレーム単位の空間的特徴を抽出し,次にローレンツ双曲空間に埋め込む。
時間的ダイナミクスをモデル化するために,ローレンツ内積と曲率対応ソフトマックスを利用して非ユークリッド幾何学の下で時間的依存関係を学習する双曲型多頭部自己注意機構(HMHA)を導入する。
本手法は, 接空間近似ではなく, 完全ローレンツ空間内での全ての特徴変換と異常スコアリングを行う。
大規模な実験により、HyPCV-Formerは複数の異常カテゴリにわたる最先端のパフォーマンスを達成し、TIMoデータセットは7倍、DADデータセットは5.6%向上した。
コードは受理後に公開される。
関連論文リスト
- Cross-Modal Geometric Hierarchy Fusion: An Implicit-Submap Driven Framework for Resilient 3D Place Recognition [4.196626042312499]
本稿では,密度に依存しない幾何学的推論により3次元位置認識を再定義するフレームワークを提案する。
具体的には、元のシーンポイント雲密度の干渉に免疫する弾性点に基づく暗黙の3次元表現を導入する。
これら2種類の情報を活用することで,鳥眼視と3Dセグメントの両視点から幾何学的情報を融合する記述子を得る。
論文 参考訳(メタデータ) (2025-06-17T07:04:07Z) - Pillar-Voxel Fusion Network for 3D Object Detection in Airborne Hyperspectral Point Clouds [35.24778377226701]
航空機搭載HPCのための3次元物体検出ネットワークPiV-A HPCを提案する。
我々はまず,HPCからスペクトルおよび垂直構造特徴を捕捉し,スペクトル歪みを克服するピラーボクセル二重分岐エンコーダを開発した。
2つのブランチ間の情報相互作用を強化するために,マルチレベル特徴融合機構が考案された。
論文 参考訳(メタデータ) (2025-04-13T10:13:48Z) - SuperFlow++: Enhanced Spatiotemporal Consistency for Cross-Modal Data Pretraining [62.433137130087445]
SuperFlow++は、連続するカメラペアを使用して事前トレーニングと下流タスクを統合する新しいフレームワークである。
SuperFlow++は様々なタスクや運転条件で最先端のメソッドよりも優れています。
強力な一般化性と計算効率により、SuperFlow++は、自動運転におけるデータ効率の高いLiDARベースの認識のための新しいベンチマークを確立する。
論文 参考訳(メタデータ) (2025-03-25T17:59:57Z) - Dynamic 3D Point Cloud Sequences as 2D Videos [81.46246338686478]
3Dポイントクラウドシーケンスは、現実世界の環境における最も一般的で実用的な表現の1つとして機能する。
textitStructured Point Cloud Videos (SPCV) と呼ばれる新しい汎用表現を提案する。
SPCVは点雲列を空間的滑らかさと時間的一貫性を持つ2Dビデオとして再編成し、画素値は点の3D座標に対応する。
論文 参考訳(メタデータ) (2024-03-02T08:18:57Z) - PTT: Point-Trajectory Transformer for Efficient Temporal 3D Object Detection [66.94819989912823]
時間的3次元物体検出を効率的に行うために,長期記憶が可能な点トラジェクトリ変換器を提案する。
私たちは、メモリバンクのストレージ要件を最小限に抑えるために、現在のフレームオブジェクトのポイントクラウドとその履歴トラジェクトリを入力として使用します。
大規模データセットに対する広範な実験を行い、我々のアプローチが最先端の手法に対してうまく機能することを実証した。
論文 参考訳(メタデータ) (2023-12-13T18:59:13Z) - Delving into CLIP latent space for Video Anomaly Recognition [24.37974279994544]
本稿では,CLIP などの大規模言語と視覚(LLV)モデルを組み合わせた新しい手法 AnomalyCLIP を提案する。
当社のアプローチでは、通常のイベントサブスペースを特定するために、潜伏するCLIP機能空間を操作することが特に必要です。
異常フレームがこれらの方向に投影されると、それらが特定のクラスに属している場合、大きな特徴量を示す。
論文 参考訳(メタデータ) (2023-10-04T14:01:55Z) - Coordinate Transformer: Achieving Single-stage Multi-person Mesh
Recovery from Videos [91.44553585470688]
ビデオから複数人の3Dメッシュを回収することは、バーチャルリアリティーや理学療法などにおけるグループ行動の自動認識に向けた重要な第一歩である。
本稿では,複数人物の時空間関係を直接モデル化し,同時にエンドツーエンドでマルチ・メッシュ・リカバリを行うコーディネート・トランスフォーマーを提案する。
3DPWデータセットの実験では、CoordFormerが最先端の精度を大幅に向上し、MPJPE、PAMPJPE、PVEの計測値でそれぞれ4.2%、8.8%、そして4.7%を上回った。
論文 参考訳(メタデータ) (2023-08-20T18:23:07Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
本稿では, 自己監督型マスク型畳み込み変圧器ブロック (SSMCTB) について述べる。
本研究では,従来の自己教師型予測畳み込み抑止ブロック(SSPCAB)を3次元マスク付き畳み込み層,チャンネルワイドアテンション用トランスフォーマー,およびハマーロスに基づく新たな自己教師型目標を用いて拡張する。
論文 参考訳(メタデータ) (2022-09-25T04:56:10Z) - Spatio-Temporal Self-Attention Network for Video Saliency Prediction [13.873682190242365]
3D畳み込みニューラルネットワークは、コンピュータビジョンにおけるビデオタスクに対して有望な結果を得た。
本稿では,ビデオ・サリエンシ予測のための時空間自己注意3ネットワーク(STSANet)を提案する。
論文 参考訳(メタデータ) (2021-08-24T12:52:47Z) - Anchor-Based Spatial-Temporal Attention Convolutional Networks for
Dynamic 3D Point Cloud Sequences [20.697745449159097]
動的3次元点雲列を処理するために,アンカー型時空間注意畳み込み演算(astaconv)を提案する。
提案する畳み込み操作は、各点の周囲に複数の仮想アンカーを設定することにより、各点の周囲にレギュラーレセプティブフィールドを構築する。
提案手法は,局所領域内の構造化情報をよりよく活用し,動的3次元点雲列から空間-時間埋め込み特徴を学習する。
論文 参考訳(メタデータ) (2020-12-20T07:35:37Z) - Robust Unsupervised Video Anomaly Detection by Multi-Path Frame
Prediction [61.17654438176999]
本稿では,フレーム予測と適切な設計による新規で頑健な非教師付きビデオ異常検出手法を提案する。
提案手法は,CUHK Avenueデータセット上で88.3%のフレームレベルAUROCスコアを得る。
論文 参考訳(メタデータ) (2020-11-05T11:34:12Z) - LiDAR-based Online 3D Video Object Detection with Graph-based Message
Passing and Spatiotemporal Transformer Attention [100.52873557168637]
3Dオブジェクト検出器は、通常は単一フレームの検出にフォーカスするが、連続する点のクラウドフレームでは情報を無視する。
本稿では,ポイントシーケンスで動作するエンドツーエンドのオンライン3Dビデオオブジェクト検出器を提案する。
論文 参考訳(メタデータ) (2020-04-03T06:06:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。