論文の概要: DBLP: Noise Bridge Consistency Distillation For Efficient And Reliable Adversarial Purification
- arxiv url: http://arxiv.org/abs/2508.00552v1
- Date: Fri, 01 Aug 2025 11:47:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.859457
- Title: DBLP: Noise Bridge Consistency Distillation For Efficient And Reliable Adversarial Purification
- Title(参考訳): DBLP:高効率で信頼性の高い対向浄化のための耐雑音性蒸留法
- Authors: Chihan Huang, Belal Alsinglawi, Islam Al-qudah,
- Abstract要約: 拡散ブリッジ蒸留法 (DBLP) は, 対向浄化のための新規かつ効率的な拡散ベースフレームワークである。
DBLPは、堅牢な精度、優れた画像品質、約0.2秒の推論時間を実現し、リアルタイムの対向的浄化に向けた重要なステップとなる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in deep neural networks (DNNs) have led to remarkable success across a wide range of tasks. However, their susceptibility to adversarial perturbations remains a critical vulnerability. Existing diffusion-based adversarial purification methods often require intensive iterative denoising, severely limiting their practical deployment. In this paper, we propose Diffusion Bridge Distillation for Purification (DBLP), a novel and efficient diffusion-based framework for adversarial purification. Central to our approach is a new objective, noise bridge distillation, which constructs a principled alignment between the adversarial noise distribution and the clean data distribution within a latent consistency model (LCM). To further enhance semantic fidelity, we introduce adaptive semantic enhancement, which fuses multi-scale pyramid edge maps as conditioning input to guide the purification process. Extensive experiments across multiple datasets demonstrate that DBLP achieves state-of-the-art (SOTA) robust accuracy, superior image quality, and around 0.2s inference time, marking a significant step toward real-time adversarial purification.
- Abstract(参考訳): 近年のディープニューラルネットワーク(DNN)の進歩は、幅広いタスクで顕著な成功を収めている。
しかし、敵の摂動に対する感受性は依然として重大な脆弱性である。
既存の拡散に基づく対向的浄化法は、しばしば集中的な反復的妄想を必要とし、その実践的展開を著しく制限する。
本稿では,DBLP (Diffusion Bridge Distillation for Purification) を提案する。
本手法は, 逆方向の雑音分布とクリーンなデータ分布とを, 潜時整合モデル (LCM) 内に配向させることを目的としている。
意味の忠実度をさらに高めるために,多スケールのピラミッドエッジマップを条件付け入力として融合した適応的意味の強化を導入し,浄化プロセスの導出を行う。
複数のデータセットにわたる大規模な実験により、DBLPは、最先端(SOTA)の堅牢な精度、画像品質、約0.2秒の推論時間を実現し、リアルタイムの敵の浄化に向けて重要な一歩を踏み出した。
関連論文リスト
- One-Step Diffusion Model for Image Motion-Deblurring [85.76149042561507]
本稿では,脱臭過程を1段階に短縮する新しいフレームワークである脱臭拡散モデル(OSDD)を提案する。
拡散モデルにおける忠実度損失に対処するために,構造復元を改善する改良された変分オートエンコーダ(eVAE)を導入する。
提案手法は,実測値と非参照値の両方で高い性能を達成する。
論文 参考訳(メタデータ) (2025-03-09T09:39:57Z) - Divide and Conquer: Heterogeneous Noise Integration for Diffusion-based Adversarial Purification [75.09791002021947]
既存の浄化法は,前向き拡散過程を通じて一定のノイズを発生させ,その後に逆の処理を行い,クリーンな例を回復させることによって,対向的摂動を妨害することを目的としている。
この方法は、前処理の均一な操作が、対向的摂動と闘いながら通常のピクセルを損なうため、根本的な欠陥がある。
ニューラルネットワークの解釈可能性に基づく異種浄化戦略を提案する。
本手法は,被写体モデルが注目する特定の画素に対して高強度雑音を決定的に印加する一方,残りの画素は低強度雑音のみを被写体とする。
論文 参考訳(メタデータ) (2025-03-03T11:00:25Z) - Adversarial Purification by Consistency-aware Latent Space Optimization on Data Manifolds [48.37843602248313]
ディープニューラルネットワーク(DNN)は、クリーンデータに知覚不能な摂動を加えることで作られた敵のサンプルに対して脆弱であり、誤った危険な予測につながる可能性がある。
本稿では、事前学習された一貫性モデルの潜在空間内のベクトルを最適化し、クリーンなデータを復元するためのサンプルを生成する、一貫性モデルに基づく適応的パーフィケーション(CMAP)を提案する。
CMAPは、高い自然な精度を維持しながら、強力な敵攻撃に対する堅牢性を著しく向上させる。
論文 参考訳(メタデータ) (2024-12-11T14:14:02Z) - LoRID: Low-Rank Iterative Diffusion for Adversarial Purification [3.735798190358]
本研究は拡散に基づく浄化法に関する情報理論的な考察である。
内在的浄化誤差の低い対向摂動を除去する新しい低ランク反復拡散浄化法であるLoRIDを導入する。
LoRIDは、ホワイトボックスとブラックボックスの設定の両方で、CIFAR-10/100、CelebA-HQ、ImageNetデータセットで優れた堅牢性を実現する。
論文 参考訳(メタデータ) (2024-09-12T17:51:25Z) - Instant Adversarial Purification with Adversarial Consistency Distillation [1.3165428727965363]
One Step Control Purification (OSCP) は、単一の神経機能評価において頑健な敵の浄化を実現する新しい防御フレームワークである。
ImageNetの実験結果はOSCPの優れた性能を示し、74.19%の防衛成功率を達成し、純度は0.1秒に過ぎなかった。
論文 参考訳(メタデータ) (2024-08-30T07:49:35Z) - Classifier Guidance Enhances Diffusion-based Adversarial Purification by Preserving Predictive Information [75.36597470578724]
敵の浄化は、敵の攻撃からニューラルネットワークを守るための有望なアプローチの1つである。
分類器決定境界から遠ざかって, 清浄するgUided Purification (COUP)アルゴリズムを提案する。
実験結果から, COUPは強力な攻撃法でより優れた対向的堅牢性が得られることが示された。
論文 参考訳(メタデータ) (2024-08-12T02:48:00Z) - ADBM: Adversarial diffusion bridge model for reliable adversarial purification [21.2538921336578]
近年,拡散型浄化法(DiffPure)は,敵の事例に対する効果的な防御法として認識されている。
DiffPureは, 元の事前学習拡散モデルを用いて, 逆流浄化を最適に行う。
本稿では,ADBMと呼ばれる新しいAdrialversa Diffusion Bridge Modelを提案する。
論文 参考訳(メタデータ) (2024-08-01T06:26:05Z) - Towards Understanding the Robustness of Diffusion-Based Purification: A Stochastic Perspective [65.10019978876863]
拡散性浄化(DBP)は、敵の攻撃に対する効果的な防御機構として出現している。
本稿では,DBPプロセスの本質性がロバスト性を駆動する主要な要因であることを示す。
論文 参考訳(メタデータ) (2024-04-22T16:10:38Z) - Guided Diffusion Model for Adversarial Purification [103.4596751105955]
敵攻撃は、様々なアルゴリズムやフレームワークでディープニューラルネットワーク(DNN)を妨害する。
本稿では,GDMP ( Guided diffusion model for purification) と呼ばれる新しい精製法を提案する。
様々なデータセットにわたる包括的実験において,提案したGDMPは,敵対的攻撃によって引き起こされた摂動を浅い範囲に減少させることを示した。
論文 参考訳(メタデータ) (2022-05-30T10:11:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。