Separated-Variable Spectral Neural Networks: A Physics-Informed Learning Approach for High-Frequency PDEs
- URL: http://arxiv.org/abs/2508.00628v1
- Date: Fri, 01 Aug 2025 13:40:10 GMT
- Title: Separated-Variable Spectral Neural Networks: A Physics-Informed Learning Approach for High-Frequency PDEs
- Authors: Xiong Xiong, Zhuo Zhang, Rongchun Hu, Chen Gao, Zichen Deng,
- Abstract summary: Separated-Variable Spectral Neural Networks (SV-SNN) is a novel framework that addresses the spectral bias problem in neural PDE solving.<n>We show that SV-SNN achieves 1-3 orders of magnitude of improvement in accuracy while reducing parameter count by over 90%.
- Score: 21.081644719506453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving high-frequency oscillatory partial differential equations (PDEs) is a critical challenge in scientific computing, with applications in fluid mechanics, quantum mechanics, and electromagnetic wave propagation. Traditional physics-informed neural networks (PINNs) suffer from spectral bias, limiting their ability to capture high-frequency solution components. We introduce Separated-Variable Spectral Neural Networks (SV-SNN), a novel framework that addresses these limitations by integrating separation of variables with adaptive spectral methods. Our approach features three key innovations: (1) decomposition of multivariate functions into univariate function products, enabling independent spatial and temporal networks; (2) adaptive Fourier spectral features with learnable frequency parameters for high-frequency capture; and (3) theoretical framework based on singular value decomposition to quantify spectral bias. Comprehensive evaluation on benchmark problems including Heat equation, Helmholtz equation, Poisson equations and Navier-Stokes equations demonstrates that SV-SNN achieves 1-3 orders of magnitude improvement in accuracy while reducing parameter count by over 90\% and training time by 60\%. These results establish SV-SNN as an effective solution to the spectral bias problem in neural PDE solving. The implementation will be made publicly available upon acceptance at https://github.com/xgxgnpu/SV-SNN.
Related papers
- LOGLO-FNO: Efficient Learning of Local and Global Features in Fourier Neural Operators [20.77877474840923]
High-frequency information is a critical challenge in machine learning.<n>Deep neural nets exhibit the so-called spectral bias toward learning low-frequency components.<n>We propose a novel frequency-sensitive loss term based on radially binned spectral errors.
arXiv Detail & Related papers (2025-04-05T19:35:04Z) - Learnable Activation Functions in Physics-Informed Neural Networks for Solving Partial Differential Equations [0.0]
Physics-Informed Neural Networks (PINNs) have emerged as a promising approach for solving Partial Differential Equations (PDEs)<n>These limitations impact their accuracy for problems involving rapid oscillations, sharp gradients, and complex boundary behaviors.<n>We investigate learnable activation functions as a solution to these challenges.
arXiv Detail & Related papers (2024-11-22T18:25:13Z) - Solving partial differential equations with sampled neural networks [1.8590821261905535]
Approximation of solutions to partial differential equations (PDE) is an important problem in computational science and engineering.
We discuss how sampling the hidden weights and biases of the ansatz network from data-agnostic and data-dependent probability distributions allows us to progress on both challenges.
arXiv Detail & Related papers (2024-05-31T14:24:39Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
This paper proposes a general acceleration methodology called NeuralStagger.
It decomposing the original learning tasks into several coarser-resolution subtasks.
We demonstrate the successful application of NeuralStagger on 2D and 3D fluid dynamics simulations.
arXiv Detail & Related papers (2023-02-20T19:36:52Z) - Incremental Spatial and Spectral Learning of Neural Operators for
Solving Large-Scale PDEs [86.35471039808023]
We introduce the Incremental Fourier Neural Operator (iFNO), which progressively increases the number of frequency modes used by the model.
We show that iFNO reduces total training time while maintaining or improving generalization performance across various datasets.
Our method demonstrates a 10% lower testing error, using 20% fewer frequency modes compared to the existing Fourier Neural Operator, while also achieving a 30% faster training.
arXiv Detail & Related papers (2022-11-28T09:57:15Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Blending Neural Operators and Relaxation Methods in PDE Numerical Solvers [3.2712166248850685]
HINTS is a hybrid, iterative, numerical, and transferable solver for partial differential equations.
It balances the convergence behavior across the spectrum of eigenmodes by utilizing the spectral bias of DeepONet.
It is flexible with regards to discretizations, computational domain, and boundary conditions.
arXiv Detail & Related papers (2022-08-28T19:07:54Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
Physics-informed neural network (PINN) algorithms have shown promising results in solving a wide range of problems involving partial differential equations (PDEs)
They often fail to converge to desirable solutions when the target function contains high-frequency features, due to a phenomenon known as spectral bias.
In the present work, we exploit neural tangent kernels (NTKs) to investigate the training dynamics of PINNs evolving under gradient descent with momentum (SGDM)
arXiv Detail & Related papers (2022-06-29T19:03:10Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.