論文の概要: FedGuard: A Diverse-Byzantine-Robust Mechanism for Federated Learning with Major Malicious Clients
- arxiv url: http://arxiv.org/abs/2508.00636v1
- Date: Fri, 01 Aug 2025 13:51:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-04 18:08:53.900895
- Title: FedGuard: A Diverse-Byzantine-Robust Mechanism for Federated Learning with Major Malicious Clients
- Title(参考訳): FedGuard:主要な悪意のある顧客によるフェデレーションラーニングのための、バイザンチン・ローバスト多種多様なメカニズム
- Authors: Haocheng Jiang, Hua Shen, Jixin Zhang, Willy Susilo, Mingwu Zhang,
- Abstract要約: フェデレートラーニングは、50%以上のクライアントが悪意がある場合、ビザンティンの攻撃に対して脆弱である。
既存の防御機構のほとんどは、特定の攻撃タイプ用に設計されている。
我々は,新しいフェデレーション学習機構であるFedGuardを提案する。
- 参考スコア(独自算出の注目度): 18.908613111464565
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning is a distributed training framework vulnerable to Byzantine attacks, particularly when over 50% of clients are malicious or when datasets are highly non-independent and identically distributed (non-IID). Additionally, most existing defense mechanisms are designed for specific attack types (e.g., gradient similarity-based schemes can only defend against outlier model poisoning), limiting their effectiveness. In response, we propose FedGuard, a novel federated learning mechanism. FedGuard cleverly addresses the aforementioned issues by leveraging the high sensitivity of membership inference to model bias. By requiring clients to include an additional mini-batch of server-specified data in their training, FedGuard can identify and exclude poisoned models, as their confidence in the mini-batch will drop significantly. Our comprehensive evaluation unequivocally shows that, under three highly non-IID datasets, with 90% of clients being Byzantine and seven different types of Byzantine attacks occurring in each round, FedGuard significantly outperforms existing robust federated learning schemes in mitigating various types of Byzantine attacks.
- Abstract(参考訳): フェデレートラーニング(Federated Learning)は、ビザンチン攻撃に脆弱な分散トレーニングフレームワークである。特に50%以上のクライアントが悪意がある場合や、データセットが非独立性が高く、同一に分散している場合(非IID)。
さらに、既存の防御機構のほとんどは、特定の攻撃タイプ(例えば、勾配類似性に基づくスキームは、外れ値モデル中毒に対してのみ防御できる)のために設計されており、その効果を制限している。
そこで我々は,新しいフェデレーション学習機構であるFedGuardを提案する。
FedGuard氏は、モデルバイアスに対するメンバーシップ推論の高感度を活用することで、上記の問題に巧みに対処する。
クライアントに、トレーニングにサーバー特定データの追加のミニバッチを含めるように要求することで、FedGuardは、ミニバッチに対する信頼度が大幅に低下するため、有毒なモデルを識別および排除することができる。
包括的評価では、3つの非IIDデータセットの下で、クライアントの90%がビザンツ人であり、各ラウンドで発生した7種類のビザンツ人攻撃に対して、FedGuardは、さまざまな種類のビザンツ人攻撃を緩和する既存の堅牢なフェデレート学習スキームを著しく上回っている。
関連論文リスト
- Adversarial Training for Defense Against Label Poisoning Attacks [53.893792844055106]
ラベル中毒攻撃は機械学習モデルに重大なリスクをもたらす。
本稿では,これらの脅威に対処するために,サポートベクトルマシン(SVM)に基づく新たな対角的防御戦略を提案する。
提案手法は, 様々なモデルアーキテクチャに対応し, カーネルSVMを用いた予測勾配降下アルゴリズムを用いて, 対向学習を行う。
論文 参考訳(メタデータ) (2025-02-24T13:03:19Z) - Client-Side Patching against Backdoor Attacks in Federated Learning [0.0]
フェデレーション学習は、悪意のある参加者によって起動されるバックドア攻撃に対して脆弱である。
本稿では,クライアント側のバックドア攻撃を緩和するフェデレーション学習システムのための新しい防御機構を提案する。
我々のアプローチは、バックドア攻撃の影響を和らげるために、敵対的学習技術とモデルパッチを利用する。
論文 参考訳(メタデータ) (2024-12-13T23:17:10Z) - FedCAP: Robust Federated Learning via Customized Aggregation and Personalization [13.17735010891312]
フェデレートラーニング(FL)は、様々なプライバシー保護シナリオに適用されている。
我々はデータ不均一性とビザンチン攻撃に対する堅牢なFLフレームワークであるFedCAPを提案する。
我々は,FedCAPがいくつかの非IID環境において良好に機能し,連続的な毒殺攻撃下で強い堅牢性を示すことを示す。
論文 参考訳(メタデータ) (2024-10-16T23:01:22Z) - Celtibero: Robust Layered Aggregation for Federated Learning [0.0]
Celtiberoは, 対向操作に対する強靭性を高めるため, 層状アグリゲーションを統合した新しい防御機構である。
セルティベロは、標的外および標的標的の毒殺攻撃において、最小攻撃成功率(ASR)を維持しつつ、常に高い主タスク精度(MTA)を達成することを実証した。
論文 参考訳(メタデータ) (2024-08-26T12:54:00Z) - Robust Federated Learning Mitigates Client-side Training Data Distribution Inference Attacks [48.70867241987739]
InferGuardは、クライアント側のトレーニングデータ分散推論攻撃に対する防御を目的とした、新しいビザンチン・ロバスト集約ルールである。
実験の結果,我々の防衛機構はクライアント側のトレーニングデータ分布推定攻撃に対する防御に極めて有効であることが示唆された。
論文 参考訳(メタデータ) (2024-03-05T17:41:35Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
フェデレーション学習は、プライバシを損なうことなく、分散化されたデータソースからの学習を可能にする。
悪意のあるクライアントがトレーニングプロセスに干渉する、毒殺攻撃のモデル化には脆弱である。
我々はFedDefenderと呼ばれるクライアントサイドに焦点を当てた新しい防御機構を提案し、クライアントの堅牢なローカルモデルのトレーニングを支援する。
論文 参考訳(メタデータ) (2023-07-18T08:00:41Z) - G$^2$uardFL: Safeguarding Federated Learning Against Backdoor Attacks
through Attributed Client Graph Clustering [116.4277292854053]
Federated Learning (FL)は、データ共有なしで協調的なモデルトレーニングを提供する。
FLはバックドア攻撃に弱いため、有害なモデル重みがシステムの整合性を損なう。
本稿では、悪意のあるクライアントの識別を属性グラフクラスタリング問題として再解釈する保護フレームワークであるG$2$uardFLを提案する。
論文 参考訳(メタデータ) (2023-06-08T07:15:04Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - FLIP: A Provable Defense Framework for Backdoor Mitigation in Federated
Learning [66.56240101249803]
我々は,クライアントの強固化がグローバルモデル(および悪意のあるクライアント)に与える影響について検討する。
本稿では, 逆エンジニアリングによる防御手法を提案するとともに, 堅牢性を保証して, 改良を実現できることを示す。
競合する8つのSOTA防御法について, 単発および連続のFLバックドア攻撃に対して, 提案手法の実証的優位性を示した。
論文 参考訳(メタデータ) (2022-10-23T22:24:03Z) - CrowdGuard: Federated Backdoor Detection in Federated Learning [39.58317527488534]
本稿では,フェデレートラーニングにおけるバックドア攻撃を効果的に軽減する新しい防御機構であるCrowdGuardを提案する。
CrowdGuardでは、サーバロケーションのスタック化されたクラスタリングスキームを使用して、クライアントからのフィードバックに対するレジリエンスを高めている。
評価結果は、CrowdGuardがさまざまなシナリオで100%正の正の正の正の負の負の負の値を達成することを示す。
論文 参考訳(メタデータ) (2022-10-14T11:27:49Z) - Fabricated Flips: Poisoning Federated Learning without Data [9.060263645085564]
フェデレートラーニング(FL)に対する攻撃は、生成されたモデルの品質を大幅に低下させる。
本稿では、悪意のあるデータを合成し、敵対的モデルを構築するデータフリーな未標的攻撃(DFA)を提案する。
DFAは、最先端の未標的攻撃と同じような、あるいはそれ以上の攻撃成功率を達成する。
論文 参考訳(メタデータ) (2022-02-07T20:38:28Z) - Label-Only Membership Inference Attacks [67.46072950620247]
ラベルのみのメンバシップ推論攻撃を導入する。
我々の攻撃は、摂動下でのモデルが予測するラベルの堅牢性を評価する。
差分プライバシーと(強い)L2正規化を備えたトレーニングモデルは、唯一知られている防衛戦略である。
論文 参考訳(メタデータ) (2020-07-28T15:44:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。