Rethinking Backbone Design for Lightweight 3D Object Detection in LiDAR
- URL: http://arxiv.org/abs/2508.00744v1
- Date: Fri, 01 Aug 2025 16:19:51 GMT
- Title: Rethinking Backbone Design for Lightweight 3D Object Detection in LiDAR
- Authors: Adwait Chandorkar, Hasan Tercan, Tobias Meisen,
- Abstract summary: We introduce Dense Backbone, a lightweight backbone that combines the benefits of high processing speed, lightweight architecture, and robust detection accuracy.<n>We adapt multiple SoTA 3d object detectors, such as PillarNet, with our backbone and show that with our backbone, these models retain most of their detection capability at a significantly reduced computational cost.<n>DensePillarNet, our adaptation of PillarNet, achieves a 29% reduction in model parameters and a 28% reduction in latency with just a 2% drop in detection accuracy on the nuScenes test set.
- Score: 6.593148700872744
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advancements in LiDAR-based 3D object detection have significantly accelerated progress toward the realization of fully autonomous driving in real-world environments. Despite achieving high detection performance, most of the approaches still rely on a VGG-based or ResNet-based backbone for feature exploration, which increases the model complexity. Lightweight backbone design is well-explored for 2D object detection, but research on 3D object detection still remains limited. In this work, we introduce Dense Backbone, a lightweight backbone that combines the benefits of high processing speed, lightweight architecture, and robust detection accuracy. We adapt multiple SoTA 3d object detectors, such as PillarNet, with our backbone and show that with our backbone, these models retain most of their detection capability at a significantly reduced computational cost. To our knowledge, this is the first dense-layer-based backbone tailored specifically for 3D object detection from point cloud data. DensePillarNet, our adaptation of PillarNet, achieves a 29% reduction in model parameters and a 28% reduction in latency with just a 2% drop in detection accuracy on the nuScenes test set. Furthermore, Dense Backbone's plug-and-play design allows straightforward integration into existing architectures, requiring no modifications to other network components.
Related papers
- PillarNeSt: Embracing Backbone Scaling and Pretraining for Pillar-based
3D Object Detection [33.00510927880774]
We show the effectiveness of 2D backbone scaling and pretraining for pillar-based 3D object detectors.
Our proposed pillar-based detector, PillarNeSt, outperforms the existing 3D object detectors by a large margin on the nuScenes and Argoversev2 datasets.
arXiv Detail & Related papers (2023-11-29T16:11:33Z) - PillarNeXt: Rethinking Network Designs for 3D Object Detection in LiDAR
Point Clouds [29.15589024703907]
In this paper, we revisit the local point aggregators from the perspective of allocating computational resources.
We find that the simplest pillar based models perform surprisingly well considering both accuracy and latency.
Our results challenge the common intuition that the detailed geometry modeling is essential to achieve high performance for 3D object detection.
arXiv Detail & Related papers (2023-05-08T17:59:14Z) - 3D Small Object Detection with Dynamic Spatial Pruning [62.72638845817799]
We propose an efficient feature pruning strategy for 3D small object detection.
We present a multi-level 3D detector named DSPDet3D which benefits from high spatial resolution.
It takes less than 2s to directly process a whole building consisting of more than 4500k points while detecting out almost all objects.
arXiv Detail & Related papers (2023-05-05T17:57:04Z) - AOP-Net: All-in-One Perception Network for Joint LiDAR-based 3D Object
Detection and Panoptic Segmentation [9.513467995188634]
AOP-Net is a LiDAR-based multi-task framework that combines 3D object detection and panoptic segmentation.
The AOP-Net achieves state-of-the-art performance for published works on the nuScenes benchmark for both 3D object detection and panoptic segmentation tasks.
arXiv Detail & Related papers (2023-02-02T05:31:53Z) - Rethinking Voxelization and Classification for 3D Object Detection [68.8204255655161]
The main challenge in 3D object detection from LiDAR point clouds is achieving real-time performance without affecting the reliability of the network.
We present a solution to improve network inference speed and precision at the same time by implementing a fast dynamic voxelizer.
In addition, we propose a lightweight detection sub-head model for classifying predicted objects and filter out false detected objects.
arXiv Detail & Related papers (2023-01-10T16:22:04Z) - AGO-Net: Association-Guided 3D Point Cloud Object Detection Network [86.10213302724085]
We propose a novel 3D detection framework that associates intact features for objects via domain adaptation.
We achieve new state-of-the-art performance on the KITTI 3D detection benchmark in both accuracy and speed.
arXiv Detail & Related papers (2022-08-24T16:54:38Z) - PillarNet: Real-Time and High-Performance Pillar-based 3D Object
Detection [4.169126928311421]
Real-time and high-performance 3D object detection is of critical importance for autonomous driving.
Recent top-performing 3D object detectors mainly rely on point-based or 3D voxel-based convolutions.
We develop a real-time and high-performance pillar-based detector, dubbed PillarNet.
arXiv Detail & Related papers (2022-05-16T00:14:50Z) - Anchor-free 3D Single Stage Detector with Mask-Guided Attention for
Point Cloud [79.39041453836793]
We develop a novel single-stage 3D detector for point clouds in an anchor-free manner.
We overcome this by converting the voxel-based sparse 3D feature volumes into the sparse 2D feature maps.
We propose an IoU-based detection confidence re-calibration scheme to improve the correlation between the detection confidence score and the accuracy of the bounding box regression.
arXiv Detail & Related papers (2021-08-08T13:42:13Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z) - Generative Sparse Detection Networks for 3D Single-shot Object Detection [43.91336826079574]
3D object detection has been widely studied due to its potential applicability to many promising areas such as robotics and augmented reality.
Yet, the sparse nature of the 3D data poses unique challenges to this task.
We propose Generative Sparse Detection Network (GSDN), a fully-convolutional single-shot sparse detection network.
arXiv Detail & Related papers (2020-06-22T15:54:24Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.