GLiDRE: Generalist Lightweight model for Document-level Relation Extraction
- URL: http://arxiv.org/abs/2508.00757v1
- Date: Fri, 01 Aug 2025 16:33:13 GMT
- Title: GLiDRE: Generalist Lightweight model for Document-level Relation Extraction
- Authors: Robin Armingaud, Romaric Besançon,
- Abstract summary: We introduce GLiDRE, a new model for document-level relation extraction.<n>We benchmark GLiDRE against state-of-the-art models across various data settings on the Re-DocRED dataset.<n>Our results demonstrate that GLiDRE achieves state-of-the-art performance in few-shot scenarios.
- Score: 0.5130175508025212
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Relation Extraction (RE) is a fundamental task in Natural Language Processing, and its document-level variant poses significant challenges, due to the need to model complex interactions between entities across sentences. Current approaches, largely based on the ATLOP architecture, are commonly evaluated on benchmarks like DocRED and Re-DocRED. However, their performance in zero-shot or few-shot settings remains largely underexplored due to the task's complexity. Recently, the GLiNER model has shown that a compact NER model can outperform much larger Large Language Models. With a similar motivation, we introduce GLiDRE, a new model for document-level relation extraction that builds on the key ideas of GliNER. We benchmark GLiDRE against state-of-the-art models across various data settings on the Re-DocRED dataset. Our results demonstrate that GLiDRE achieves state-of-the-art performance in few-shot scenarios. Our code is publicly available.
Related papers
- New Dataset and Methods for Fine-Grained Compositional Referring Expression Comprehension via Specialist-MLLM Collaboration [49.180693704510006]
Referring Expression (REC) is a cross-modal task that evaluates the interplay of language understanding, image comprehension, and language-to-image grounding.<n>It serves as an essential testing ground for Multimodal Large Language Models (MLLMs)
arXiv Detail & Related papers (2025-02-27T13:58:44Z) - Less is More: Making Smaller Language Models Competent Subgraph Retrievers for Multi-hop KGQA [51.3033125256716]
We model the subgraph retrieval task as a conditional generation task handled by small language models.
Our base generative subgraph retrieval model, consisting of only 220M parameters, competitive retrieval performance compared to state-of-the-art models.
Our largest 3B model, when plugged with an LLM reader, sets new SOTA end-to-end performance on both the WebQSP and CWQ benchmarks.
arXiv Detail & Related papers (2024-10-08T15:22:36Z) - Evaluating Named Entity Recognition Using Few-Shot Prompting with Large Language Models [0.0]
Few-Shot Prompting or in-context learning enables models to recognize entities with minimal examples.
We assess state-of-the-art models like GPT-4 in NER tasks, comparing their few-shot performance to fully supervised benchmarks.
arXiv Detail & Related papers (2024-08-28T13:42:28Z) - GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - PartGLEE: A Foundation Model for Recognizing and Parsing Any Objects [104.34288029037141]
We present PartGLEE, a part-level foundation model for locating and identifying both objects and parts in images.
PartGLEE accomplishes detection, segmentation, and grounding of instances at any granularity in the open world scenario.
arXiv Detail & Related papers (2024-07-23T17:58:26Z) - GLiNER multi-task: Generalist Lightweight Model for Various Information Extraction Tasks [0.0]
We will introduce a new kind of GLiNER model that can be used for various information extraction tasks while being a small encoder model.
Our model achieved SoTA performance on zero-shot NER benchmarks and leading performance on question-answering, summarization and relation extraction tasks.
arXiv Detail & Related papers (2024-06-14T13:54:29Z) - AutoRE: Document-Level Relation Extraction with Large Language Models [27.426703757501507]
We introduce AutoRE, an end-to-end DocRE model that adopts a novel RE extraction paradigm named RHF (Relation-Head-Facts)
Unlike existing approaches, AutoRE does not rely on the assumption of known relation options, making it more reflective of real-world scenarios.
Our experiments on the RE-DocRED dataset showcase AutoRE's best performance, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-03-21T23:48:21Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - TAGPRIME: A Unified Framework for Relational Structure Extraction [71.88926365652034]
TAGPRIME is a sequence tagging model that appends priming words about the information of the given condition to the input text.
With the self-attention mechanism in pre-trained language models, the priming words make the output contextualized representations contain more information about the given condition.
Extensive experiments and analyses on three different tasks that cover ten datasets across five different languages demonstrate the generality and effectiveness of TAGPRIME.
arXiv Detail & Related papers (2022-05-25T08:57:46Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
We propose a principled inference framework to improve summarization models on two aspects.
Our framework assumes a hierarchical latent structure of a document where the top-level captures the long range dependency.
We demonstrate the effectiveness of the proposed framework on a diverse set of summarization datasets.
arXiv Detail & Related papers (2022-03-15T01:24:51Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z) - Rethinking Generalization of Neural Models: A Named Entity Recognition
Case Study [81.11161697133095]
We take the NER task as a testbed to analyze the generalization behavior of existing models from different perspectives.
Experiments with in-depth analyses diagnose the bottleneck of existing neural NER models.
As a by-product of this paper, we have open-sourced a project that involves a comprehensive summary of recent NER papers.
arXiv Detail & Related papers (2020-01-12T04:33:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.