Online Fine-Tuning of Carbon Emission Predictions using Real-Time Recurrent Learning for State Space Models
- URL: http://arxiv.org/abs/2508.00804v1
- Date: Fri, 01 Aug 2025 17:37:19 GMT
- Title: Online Fine-Tuning of Carbon Emission Predictions using Real-Time Recurrent Learning for State Space Models
- Authors: Julian Lemmel, Manuel Kranzl, Adam Lamine, Philipp Neubauer, Radu Grosu, Sophie Neubauer,
- Abstract summary: This paper introduces a new approach for fine-tuning the predictions of structured state space models (SSMs) at inference time using real-time recurrent learning.<n>We evaluate our approach for linear-recurrent-unit SSMs using a small carbon emission dataset collected from embedded automotive hardware.
- Score: 5.543765065730817
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: This paper introduces a new approach for fine-tuning the predictions of structured state space models (SSMs) at inference time using real-time recurrent learning. While SSMs are known for their efficiency and long-range modeling capabilities, they are typically trained offline and remain static during deployment. Our method enables online adaptation by continuously updating model parameters in response to incoming data. We evaluate our approach for linear-recurrent-unit SSMs using a small carbon emission dataset collected from embedded automotive hardware. Experimental results show that our method consistently reduces prediction error online during inference, demonstrating its potential for dynamic, resource-constrained environments.
Related papers
- Data-assimilated model-informed reinforcement learning [3.4748713192043876]
In practice, sensors often provide only partial and noisy measurements (obations) of the system.<n>We propose a framework that enables the control of chaotic systems with partial and noisy observability.<n>We show that DA-MIRL successfully estimates and suppresses the chaotic dynamics of the environment in real time from partial observations and approximate models.
arXiv Detail & Related papers (2025-06-02T15:02:26Z) - Recursive Learning of Asymptotic Variational Objectives [49.69399307452126]
General state-space models (SSMs) are widely used in statistical machine learning and are among the most classical generative models for sequential time-series data.
Online sequential IWAE (OSIWAE) allows for online learning of both model parameters and a Markovian recognition model for inferring latent states.
This approach is more theoretically well-founded than recently proposed online variational SMC methods.
arXiv Detail & Related papers (2024-11-04T16:12:37Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - MOTO: Offline Pre-training to Online Fine-tuning for Model-based Robot
Learning [52.101643259906915]
We study the problem of offline pre-training and online fine-tuning for reinforcement learning from high-dimensional observations.
Existing model-based offline RL methods are not suitable for offline-to-online fine-tuning in high-dimensional domains.
We propose an on-policy model-based method that can efficiently reuse prior data through model-based value expansion and policy regularization.
arXiv Detail & Related papers (2024-01-06T21:04:31Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Koopman Invertible Autoencoder: Leveraging Forward and Backward Dynamics
for Temporal Modeling [13.38194491846739]
We propose a novel machine learning model based on Koopman operator theory, which we call Koopman Invertible Autoencoders (KIA)
KIA captures the inherent characteristic of the system by modeling both forward and backward dynamics in the infinite-dimensional Hilbert space.
This enables us to efficiently learn low-dimensional representations, resulting in more accurate predictions of long-term system behavior.
arXiv Detail & Related papers (2023-09-19T03:42:55Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Kalman Filter for Online Classification of Non-Stationary Data [101.26838049872651]
In Online Continual Learning (OCL) a learning system receives a stream of data and sequentially performs prediction and training steps.
We introduce a probabilistic Bayesian online learning model by using a neural representation and a state space model over the linear predictor weights.
In experiments in multi-class classification we demonstrate the predictive ability of the model and its flexibility to capture non-stationarity.
arXiv Detail & Related papers (2023-06-14T11:41:42Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - POLA: Online Time Series Prediction by Adaptive Learning Rates [4.105553918089042]
We propose POLA to automatically regulate the learning rate of recurrent neural network models to adapt to changing time series patterns across time.
POLA demonstrates overall comparable or better predictive performance over other online prediction methods.
arXiv Detail & Related papers (2021-02-17T17:56:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.