Cross-Dataset Semantic Segmentation Performance Analysis: Unifying NIST Point Cloud City Datasets for 3D Deep Learning
- URL: http://arxiv.org/abs/2508.00822v1
- Date: Fri, 01 Aug 2025 17:59:02 GMT
- Title: Cross-Dataset Semantic Segmentation Performance Analysis: Unifying NIST Point Cloud City Datasets for 3D Deep Learning
- Authors: Alexander Nikitas Dimopoulos, Joseph Grasso,
- Abstract summary: This study analyzes semantic segmentation performance across heterogeneously labeled point-cloud datasets relevant to public safety applications.<n>Key identified challenges include insufficient labeled data, difficulties in unifying class labels across datasets, and the need for standardization.
- Score: 49.1574468325115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study analyzes semantic segmentation performance across heterogeneously labeled point-cloud datasets relevant to public safety applications, including pre-incident planning systems derived from lidar scans. Using NIST's Point Cloud City dataset (Enfield and Memphis collections), we investigate challenges in unifying differently labeled 3D data. Our methodology employs a graded schema with the KPConv architecture, evaluating performance through IoU metrics on safety-relevant features. Results indicate performance variability: geometrically large objects (e.g. stairs, windows) achieve higher segmentation performance, suggesting potential for navigational context, while smaller safety-critical features exhibit lower recognition rates. Performance is impacted by class imbalance and the limited geometric distinction of smaller objects in typical lidar scans, indicating limitations in detecting certain safety-relevant features using current point-cloud methods. Key identified challenges include insufficient labeled data, difficulties in unifying class labels across datasets, and the need for standardization. Potential directions include automated labeling and multi-dataset learning strategies. We conclude that reliable point-cloud semantic segmentation for public safety necessitates standardized annotation protocols and improved labeling techniques to address data heterogeneity and the detection of small, safety-critical elements.
Related papers
- Extending Dataset Pruning to Object Detection: A Variance-based Approach [0.0]
We present the first extension of classification pruning techniques to the object detection domain.<n>We propose tailored solutions, including a novel scoring method called Variance-based Prediction Score (VPS)<n>Our work bridges dataset pruning and object detection, paving the way for dataset pruning in complex vision tasks.
arXiv Detail & Related papers (2025-05-22T19:46:51Z) - Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.<n>Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.<n>We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - A Data-efficient Framework for Robotics Large-scale LiDAR Scene Parsing [10.497309421830671]
Existing state-of-the-art 3D point clouds understanding methods only perform well in a fully supervised manner.
This work presents a general and simple framework to tackle point clouds understanding when labels are limited.
arXiv Detail & Related papers (2023-12-03T02:38:51Z) - Hierarchical Point-based Active Learning for Semi-supervised Point Cloud
Semantic Segmentation [48.40853126077237]
It is labour-intensive to acquire large-scale point cloud data with point-wise labels.
Active learning is one of the effective strategies to achieve this purpose but is still under-explored.
This paper develops a hierarchical point-based active learning strategy.
arXiv Detail & Related papers (2023-08-22T03:52:05Z) - GaIA: Graphical Information Gain based Attention Network for Weakly
Supervised Point Cloud Semantic Segmentation [2.796057369371464]
This study aims to reduce the uncertainty measured by the entropy for a precise semantic segmentation.
We propose the graphical information gain based attention network called GaIA, which alleviates the entropy of each point based on the reliable information.
Experimental results on S3DIS and ScanNet-v2 datasets demonstrate our framework outperforms the existing weakly supervised methods.
arXiv Detail & Related papers (2022-10-02T08:37:16Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - 3D Spatial Recognition without Spatially Labeled 3D [127.6254240158249]
We introduce WyPR, a Weakly-supervised framework for Point cloud Recognition.
We show that WyPR can detect and segment objects in point cloud data without access to any spatial labels at training time.
arXiv Detail & Related papers (2021-05-13T17:58:07Z) - SegmentMeIfYouCan: A Benchmark for Anomaly Segmentation [111.61261419566908]
Deep neural networks (DNNs) are usually trained on a closed set of semantic classes.
They are ill-equipped to handle previously-unseen objects.
detecting and localizing such objects is crucial for safety-critical applications such as perception for automated driving.
arXiv Detail & Related papers (2021-04-30T07:58:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.