論文の概要: HoneyImage: Verifiable, Harmless, and Stealthy Dataset Ownership Verification for Image Models
- arxiv url: http://arxiv.org/abs/2508.00892v1
- Date: Sun, 27 Jul 2025 08:44:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 20:32:48.665963
- Title: HoneyImage: Verifiable, Harmless, and Stealthy Dataset Ownership Verification for Image Models
- Title(参考訳): HoneyImage:画像モデルのための検証可能、無害、ステルスなデータセットのオーナーシップ検証
- Authors: Zhihao Zhu, Jiale Han, Yi Yang,
- Abstract要約: HoneyImageは画像認識モデルにおけるデータセットのオーナシップ検証の新しい手法である。
HoneyImageは、少数のハードサンプルを選択的に修正して、認識不能で検証可能なトレースを埋め込む。
実験によると、HoneyImageは下流のパフォーマンスに最小限の影響を伴って、強い検証精度を一貫して達成している。
- 参考スコア(独自算出の注目度): 20.15391412550277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image-based AI models are increasingly deployed across a wide range of domains, including healthcare, security, and consumer applications. However, many image datasets carry sensitive or proprietary content, raising critical concerns about unauthorized data usage. Data owners therefore need reliable mechanisms to verify whether their proprietary data has been misused to train third-party models. Existing solutions, such as backdoor watermarking and membership inference, face inherent trade-offs between verification effectiveness and preservation of data integrity. In this work, we propose HoneyImage, a novel method for dataset ownership verification in image recognition models. HoneyImage selectively modifies a small number of hard samples to embed imperceptible yet verifiable traces, enabling reliable ownership verification while maintaining dataset integrity. Extensive experiments across four benchmark datasets and multiple model architectures show that HoneyImage consistently achieves strong verification accuracy with minimal impact on downstream performance while maintaining imperceptible. The proposed HoneyImage method could provide data owners with a practical mechanism to protect ownership over valuable image datasets, encouraging safe sharing and unlocking the full transformative potential of data-driven AI.
- Abstract(参考訳): 画像ベースのAIモデルは、医療、セキュリティ、消費者アプリケーションなど、幅広い領域に展開されている。
しかし、多くの画像データセットは機密またはプロプライエタリなコンテンツを持ち、無許可のデータ使用に関する重要な懸念を提起する。
したがって、データ所有者は、独自のデータがサードパーティモデルのトレーニングに誤用されているかどうかを確認するための信頼性の高いメカニズムが必要である。
バックドアの透かしやメンバーシップ推論といった既存のソリューションは、検証の有効性とデータの整合性の保存の間に固有のトレードオフに直面します。
本研究では,画像認識モデルにおけるデータセットのオーナシップ検証のための新しい手法であるHoneyImageを提案する。
HoneyImageは、少数のハードサンプルを選択的に修正して、認識不能で検証可能なトレースを埋め込むことで、データセットの整合性を維持しながら、信頼性の高いオーナシップ検証を可能にする。
4つのベンチマークデータセットと複数のモデルアーキテクチャにわたる大規模な実験により、HoneyImageは、非受容性を維持しながら、下流のパフォーマンスへの影響を最小限に抑えながら、強い検証精度を一貫して達成している。
提案されたHoneyImageメソッドは、データ所有者に、価値ある画像データセットよりもオーナシップを保護し、データ駆動型AIの完全なトランスフォーメーションポテンシャルを安全に共有し、アンロックする実用的なメカニズムを提供する。
関連論文リスト
- CertDW: Towards Certified Dataset Ownership Verification via Conformal Prediction [48.82467166657901]
本稿では,最初の認証データセット透かし(CertDW)とCertDWベースの認証データセットオーナシップ検証手法を提案する。
共形予測に触発されて,主確率 (PP) と透かし頑健性 (WR) の2つの統計指標を導入する。
我々は、不審モデルのWR値が、透かしのないデータセットでトレーニングされた良性モデルのPP値を大幅に上回る場合に、PPとWRの間に証明可能な低い境界が存在することを証明した。
論文 参考訳(メタデータ) (2025-06-16T07:17:23Z) - RAID: A Dataset for Testing the Adversarial Robustness of AI-Generated Image Detectors [57.81012948133832]
本稿では,72kの多種多様かつ高い変換可能な対向例からなるRAID(Robust Evaluation of AI- generated Image Detectors)を提案する。
提案手法は,未知の検出器に高い成功率で転送する逆画像を生成する。
以上の結果から,現在最先端のAI生成画像検出器は,敵の例によって容易に認識できることが示唆された。
論文 参考訳(メタデータ) (2025-06-04T14:16:00Z) - Harnessing Frequency Spectrum Insights for Image Copyright Protection Against Diffusion Models [26.821064889438777]
本稿では,拡散生成画像がトレーニングデータの統計的特性を忠実に保存していることを示す。
emphCoprGuardは、許可されていない画像の使用を防ぐための堅牢な周波数領域透かしフレームワークである。
論文 参考訳(メタデータ) (2025-03-14T04:27:50Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
顔合成と編集のためのディープフェイク技術は、生成モデルに重大なリスクをもたらす。
本稿では,モデルバックボーン,タイプ,データセット間で検出性能がどう変化するかを検討する。
本稿では、顔画像のパフォーマンスを向上させるContrastive Blurと、ノイズタイプのバイアスに対処し、ドメイン間のパフォーマンスのバランスをとるMINDERを紹介する。
論文 参考訳(メタデータ) (2024-11-28T13:04:45Z) - Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
新しいパーソナライズ技術は、特定のテーマやスタイルのイメージを作成するために、事前訓練されたベースモデルをカスタマイズするために提案されている。
このような軽量なソリューションは、パーソナライズされたモデルが不正なデータからトレーニングされているかどうかに関して、新たな懸念を生じさせる。
我々は、ブラックボックスパーソナライズされたテキスト・ツー・イメージ拡散モデルにおいて、不正なデータ使用を積極的に追跡する新しい手法であるSIRENを紹介する。
論文 参考訳(メタデータ) (2024-10-14T12:29:23Z) - Detecting Dataset Abuse in Fine-Tuning Stable Diffusion Models for Text-to-Image Synthesis [3.8809673918404246]
認証されていない使用とトレースデータのリークを検出するために設計されたデータセットの透かしフレームワーク。
我々は、不正使用やトレースデータ漏洩を検出するために設計されたデータセット透かしフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-27T16:34:48Z) - EnTruth: Enhancing the Traceability of Unauthorized Dataset Usage in Text-to-image Diffusion Models with Minimal and Robust Alterations [73.94175015918059]
本稿では、未承認のデータセット使用のトレーサビリティを高める新しいアプローチであるEnTruthを紹介する。
テンプレートの暗記を戦略的に取り入れることで、EnTruthは不正なモデルの特定の振る舞いを侵害の証拠として引き起こすことができる。
本手法は, 暗記の正当性を調査し, 著作権保護に利用し, 呪いを祝福する最初の方法である。
論文 参考訳(メタデータ) (2024-06-20T02:02:44Z) - Masked Images Are Counterfactual Samples for Robust Fine-tuning [77.82348472169335]
微調整の深層学習モデルは、分布内(ID)性能と分布外(OOD)堅牢性の間のトレードオフにつながる可能性がある。
そこで本研究では,マスク付き画像を対物サンプルとして用いて,ファインチューニングモデルのロバスト性を向上させる新しいファインチューニング手法を提案する。
論文 参考訳(メタデータ) (2023-03-06T11:51:28Z) - ConfounderGAN: Protecting Image Data Privacy with Causal Confounder [85.6757153033139]
本稿では,GAN(Generative Adversarial Network)のConfounderGANを提案する。
実験は、3つの自然なオブジェクトデータセットと3つの医療データセットからなる6つの画像分類データセットで実施される。
論文 参考訳(メタデータ) (2022-12-04T08:49:14Z) - Black-box Dataset Ownership Verification via Backdoor Watermarking [67.69308278379957]
我々は、リリースデータセットの保護を、(目立たしい)サードパーティモデルのトレーニングに採用されているかどうかの検証として定式化する。
バックドアの透かしを通じて外部パターンを埋め込んでオーナシップの検証を行い,保護することを提案する。
具体的には、有毒なバックドア攻撃(例えばBadNets)をデータセットのウォーターマーキングに利用し、データセット検証のための仮説テストガイダンスメソッドを設計する。
論文 参考訳(メタデータ) (2022-08-04T05:32:20Z) - Generative Modeling Helps Weak Supervision (and Vice Versa) [87.62271390571837]
本稿では,弱い監督と生成的敵ネットワークを融合したモデルを提案する。
弱い監督によるラベル推定と並行して、データの離散変数をキャプチャする。
これは、弱い教師付き合成画像と擬似ラベルによるデータ拡張を可能にする最初のアプローチである。
論文 参考訳(メタデータ) (2022-03-22T20:24:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。