NeuCoReClass AD: Redefining Self-Supervised Time Series Anomaly Detection
- URL: http://arxiv.org/abs/2508.00909v1
- Date: Tue, 29 Jul 2025 15:04:05 GMT
- Title: NeuCoReClass AD: Redefining Self-Supervised Time Series Anomaly Detection
- Authors: Aitor Sánchez-Ferrera, Usue Mori, Borja Calvo, Jose A. Lozano,
- Abstract summary: We introduce NeuCoReClass AD, a self-supervised multi-task time series anomaly detection framework.<n>Our method employs neural transformation learning to generate augmented views that are informative, diverse, and coherent, without requiring domain-specific knowledge.
- Score: 0.8349690795786082
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Time series anomaly detection plays a critical role in a wide range of real-world applications. Among unsupervised approaches, self-supervised learning has gained traction for modeling normal behavior without the need of labeled data. However, many existing methods rely on a single proxy task, limiting their ability to capture meaningful patterns in normal data. Moreover, they often depend on handcrafted transformations tailored specific domains, hindering their generalization accross diverse problems. To address these limitations, we introduce NeuCoReClass AD, a self-supervised multi-task time series anomaly detection framework that combines contrastive, reconstruction, and classification proxy tasks. Our method employs neural transformation learning to generate augmented views that are informative, diverse, and coherent, without requiring domain-specific knowledge. We evaluate NeuCoReClass AD across a wide range of benchmarks, demonstrating that it consistently outperforms both classical baselines and most deep-learning alternatives. Furthermore, it enables the characterization of distinct anomaly profiles in a fully unsupervised manner.
Related papers
- FreRA: A Frequency-Refined Augmentation for Contrastive Learning on Time Series Classification [56.925103708982164]
We present a novel perspective from the frequency domain and identify three advantages for downstream classification: global, independent, and compact.<n>We propose the lightweight yet effective Frequency Refined Augmentation (FreRA) tailored for time series contrastive learning on classification tasks.<n>FreRA consistently outperforms ten leading baselines on time series classification, anomaly detection, and transfer learning tasks.
arXiv Detail & Related papers (2025-05-29T07:18:28Z) - DConAD: A Differencing-based Contrastive Representation Learning Framework for Time Series Anomaly Detection [12.658792855097198]
Time series anomaly holds notable importance for risk identification and fault detection across diverse application domains.<n>Unsupervised learning methods have become popular because they have no requirement for labels.<n>We propose a differencing-based contrastive representation learning framework for time series anomaly detection (DConAD)
arXiv Detail & Related papers (2025-04-19T06:35:06Z) - General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data [61.163542597764796]
We show that time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain.<n>A novel Fourier knowledge attention mechanism is proposed to enable learning time-aware representations from both the temporal and frequency domains.<n>An autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy.
arXiv Detail & Related papers (2025-02-05T15:20:04Z) - CNC: Cross-modal Normality Constraint for Unsupervised Multi-class Anomaly Detection [34.675120608542265]
We propose a novel approach that leverages class-agnostic learnable prompts to guide the decoded features towards a normal textual representation.<n>Our method achieves competitive performance on the MVTec AD and VisA datasets, demonstrating its effectiveness.
arXiv Detail & Related papers (2024-12-31T08:43:44Z) - Impact of Recurrent Neural Networks and Deep Learning Frameworks on Real-time Lightweight Time Series Anomaly Detection [0.0]
It is unclear how the use of different types of RNNs available in various deep learning frameworks affects the performance of these anomaly detection approaches.
We reviewed several state-of-the-art approaches and implemented a representative anomaly detection approach using well-known RNN variants.
A comprehensive evaluation is then conducted to analyze the performance of each implementation across real-world, open-source time series datasets.
arXiv Detail & Related papers (2024-07-26T00:38:51Z) - Infinite dSprites for Disentangled Continual Learning: Separating Memory Edits from Generalization [36.23065731463065]
We introduce Infinite dSprites, a parsimonious tool for creating continual classification benchmarks of arbitrary length.
We show that over a sufficiently long time horizon, the performance of all major types of continual learning methods deteriorates on this simple benchmark.
In a simple setting with direct supervision on the generative factors, we show how learning class-agnostic transformations offers a way to circumvent catastrophic forgetting.
arXiv Detail & Related papers (2023-12-27T22:05:42Z) - Activate and Reject: Towards Safe Domain Generalization under Category
Shift [71.95548187205736]
We study a practical problem of Domain Generalization under Category Shift (DGCS)
It aims to simultaneously detect unknown-class samples and classify known-class samples in the target domains.
Compared to prior DG works, we face two new challenges: 1) how to learn the concept of unknown'' during training with only source known-class samples, and 2) how to adapt the source-trained model to unseen environments.
arXiv Detail & Related papers (2023-10-07T07:53:12Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - A Shapelet-based Framework for Unsupervised Multivariate Time Series Representation Learning [29.511632089649552]
We propose a novel URL framework for multivariate time series by learning time-series-specific shapelet-based representation.
To the best of our knowledge, this is the first work that explores the shapelet-based embedding in the unsupervised general-purpose representation learning.
A unified shapelet-based encoder and a novel learning objective with multi-grained contrasting and multi-scale alignment are particularly designed to achieve our goal.
arXiv Detail & Related papers (2023-05-30T09:31:57Z) - Neural Contextual Anomaly Detection for Time Series [7.523820334642732]
We introduce Neural Contextual Anomaly Detection (NCAD), a framework for anomaly detection on time series.
NCAD scales seamlessly from the unsupervised to supervised setting.
We demonstrate empirically on standard benchmark datasets that our approach obtains a state-of-the-art performance.
arXiv Detail & Related papers (2021-07-16T04:33:53Z) - Task-agnostic Continual Learning with Hybrid Probabilistic Models [75.01205414507243]
We propose HCL, a Hybrid generative-discriminative approach to Continual Learning for classification.
The flow is used to learn the data distribution, perform classification, identify task changes, and avoid forgetting.
We demonstrate the strong performance of HCL on a range of continual learning benchmarks such as split-MNIST, split-CIFAR, and SVHN-MNIST.
arXiv Detail & Related papers (2021-06-24T05:19:26Z) - Unsupervised and self-adaptative techniques for cross-domain person
re-identification [82.54691433502335]
Person Re-Identification (ReID) across non-overlapping cameras is a challenging task.
Unsupervised Domain Adaptation (UDA) is a promising alternative, as it performs feature-learning adaptation from a model trained on a source to a target domain without identity-label annotation.
In this paper, we propose a novel UDA-based ReID method that takes advantage of triplets of samples created by a new offline strategy.
arXiv Detail & Related papers (2021-03-21T23:58:39Z) - Multi-Domain Adversarial Feature Generalization for Person
Re-Identification [52.835955258959785]
We propose a multi-dataset feature generalization network (MMFA-AAE)
It is capable of learning a universal domain-invariant feature representation from multiple labeled datasets and generalizing it to unseen' camera systems.
It also surpasses many state-of-the-art supervised methods and unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2020-11-25T08:03:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.