gpuRDF2vec -- Scalable GPU-based RDF2vec
- URL: http://arxiv.org/abs/2508.01073v1
- Date: Fri, 01 Aug 2025 21:07:31 GMT
- Title: gpuRDF2vec -- Scalable GPU-based RDF2vec
- Authors: Martin Böckling, Heiko Paulheim,
- Abstract summary: RDF2vec is a library that harnesses modern GPUs and supports multi-node execution to accelerate every stage of the RDF2vec pipeline.<n>RDF2vec achieves a substantial speedup over the currently fastest alternative, i.e. jRDF2vec.<n>Our implementation ofRDF2vec enables practitioners and researchers to train high-quality KG embeddings on large-scale graphs within practical time budgets.
- Score: 1.8722948221596285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generating Knowledge Graph (KG) embeddings at web scale remains challenging. Among existing techniques, RDF2vec combines effectiveness with strong scalability. We present gpuRDF2vec, an open source library that harnesses modern GPUs and supports multi-node execution to accelerate every stage of the RDF2vec pipeline. Extensive experiments on both synthetically generated graphs and real-world benchmarks show that gpuRDF2vec achieves up to a substantial speedup over the currently fastest alternative, i.e., jRDF2vec. In a single-node setup, our walk-extraction phase alone outperforms pyRDF2vec, SparkKGML, and jRDF2vec by a substantial margin using random walks on large/ dense graphs, and scales very well to longer walks, which typically lead to better quality embeddings. Our implementation of gpuRDF2vec enables practitioners and researchers to train high-quality KG embeddings on large-scale graphs within practical time budgets and builds on top of Pytorch Lightning for the scalable word2vec implementation.
Related papers
- FastGL: A GPU-Efficient Framework for Accelerating Sampling-Based GNN Training at Large Scale [29.272368697268433]
Graph Neural Networks (GNNs) have shown great superiority on non-Euclidean graph data.
We propose FastGL, a GPU-efficient Framework for accelerating sampling-based training of GNN at Large scale.
FastGL can achieve an average speedup of 11.8x, 2.2x and 1.5x over the state-of-the-art frameworks PyG, DGL, and GNNLab, respectively.
arXiv Detail & Related papers (2024-09-23T11:45:47Z) - WiLoR: End-to-end 3D Hand Localization and Reconstruction in-the-wild [53.288327629960364]
We present a data-driven pipeline for efficient multi-hand reconstruction in the wild.<n>The proposed pipeline is composed of two components: a real-time fully convolutional hand localization and a high-fidelity transformer-based 3D hand reconstruction model.<n>Our approach outperforms previous methods in both efficiency and accuracy on popular 2D and 3D benchmarks.
arXiv Detail & Related papers (2024-09-18T18:46:51Z) - fVDB: A Deep-Learning Framework for Sparse, Large-Scale, and High-Performance Spatial Intelligence [50.417261057533786]
fVDB is a novel framework for deep learning on large-scale 3D data.
Our framework is fully integrated with PyTorch enabling interoperability with existing pipelines.
arXiv Detail & Related papers (2024-07-01T20:20:33Z) - Iterative Filter Pruning for Concatenation-based CNN Architectures [9.651318927588934]
Modern object detectors have highly interconnected convolutional layers with concatenations.
We propose a method to handle concatenation layers, based on the connectivity graph of convolutional layers.
We deploy pruned models to FPGA and NVIDIA Jetson Xavier AGX.
arXiv Detail & Related papers (2024-05-04T19:40:42Z) - TorchSparse++: Efficient Training and Inference Framework for Sparse
Convolution on GPUs [20.4238781638402]
Sparse convolution plays a pivotal role in emerging workloads, including point cloud processing in AR/VR, autonomous driving, and graph understanding in recommendation systems.
Existing GPU libraries offer two dataflow types for sparse convolution.
We introduce TorchSparse++, a new GPU library that achieves the best of both worlds.
arXiv Detail & Related papers (2023-10-25T21:02:38Z) - TAPIR: Tracking Any Point with per-frame Initialization and temporal
Refinement [64.11385310305612]
We present a novel model for Tracking Any Point (TAP) that effectively tracks any queried point on any physical surface throughout a video sequence.
Our approach employs two stages: (1) a matching stage, which independently locates a suitable candidate point match for the query point on every other frame, and (2) a refinement stage, which updates both the trajectory and query features based on local correlations.
The resulting model surpasses all baseline methods by a significant margin on the TAP-Vid benchmark, as demonstrated by an approximate 20% absolute average Jaccard (AJ) improvement on DAVIS.
arXiv Detail & Related papers (2023-06-14T17:07:51Z) - Efficient Large-scale Scene Representation with a Hybrid of
High-resolution Grid and Plane Features [44.25307397334988]
Existing neural radiance fields (NeRF) methods for large-scale scene modeling require days of training using multiple GPUs.
We introduce a new and efficient hybrid feature representation for NeRF that fuses the 3D hash-grids and high-resolution 2D dense plane features.
Based on this hybrid representation, we propose a fast optimization NeRF variant, called GP-NeRF, that achieves better rendering results while maintaining a compact model size.
arXiv Detail & Related papers (2023-03-06T10:04:50Z) - SFNet: Faster and Accurate Semantic Segmentation via Semantic Flow [88.97790684009979]
A common practice to improve the performance is to attain high-resolution feature maps with strong semantic representation.
We propose a Flow Alignment Module (FAM) to learn textitSemantic Flow between feature maps of adjacent levels.
We also present a novel Gated Dual Flow Alignment Module to directly align high-resolution feature maps and low-resolution feature maps.
arXiv Detail & Related papers (2022-07-10T08:25:47Z) - Towards Fast, Accurate and Stable 3D Dense Face Alignment [73.01620081047336]
We propose a novel regression framework named 3DDFA-V2 which makes a balance among speed, accuracy and stability.
We present a virtual synthesis method to transform one still image to a short-video which incorporates in-plane and out-of-plane face moving.
arXiv Detail & Related papers (2020-09-21T15:37:37Z) - Towards Exploiting Implicit Human Feedback for Improving RDF2vec
Embeddings [2.3605348648054463]
RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph.
In this paper, we explore the use of external edge weights for guiding the random walks.
arXiv Detail & Related papers (2020-04-09T08:39:19Z) - PolyScientist: Automatic Loop Transformations Combined with Microkernels
for Optimization of Deep Learning Primitives [55.79741270235602]
We develop a hybrid solution to the development of deep learning kernels.
We use the advanced polyhedral technology to automatically tune the outer loops for performance.
arXiv Detail & Related papers (2020-02-06T08:02:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.