From Taylor Series to Fourier Synthesis: The Periodic Linear Unit
- URL: http://arxiv.org/abs/2508.01175v1
- Date: Sat, 02 Aug 2025 03:26:48 GMT
- Title: From Taylor Series to Fourier Synthesis: The Periodic Linear Unit
- Authors: Shiko Kudo,
- Abstract summary: We introduce the Periodic Linear Unit (PLU), a learnable sine-wave based activation with periodic non-monotonicity.<n>We demonstrate that a minimal activation with only two neurons can solve the spiral classification task, a feat impossible for equivalent networks using standard activations.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The dominant paradigm in modern neural networks relies on simple, monotonically-increasing activation functions like ReLU. While effective, this paradigm necessitates large, massively-parameterized models to approximate complex functions. In this paper, we introduce the Periodic Linear Unit (PLU), a learnable sine-wave based activation with periodic non-monotonicity. PLU is designed for maximum expressive power and numerical stability, achieved through its formulation and a paired innovation we term Repulsive Reparameterization, which prevents the activation from collapsing into a non-expressive linear function. We demonstrate that a minimal MLP with only two PLU neurons can solve the spiral classification task, a feat impossible for equivalent networks using standard activations. This suggests a paradigm shift from networks as piecewise Taylor-like approximators to powerful Fourier-like function synthesizers, achieving exponential gains in parameter efficiency by placing intelligence in the neuron itself.
Related papers
- Sinusoidal Approximation Theorem for Kolmogorov-Arnold Networks [0.0]
Kolmogorov-Arnold Networks (KANs) have been recently proposed as an alternative to multilayer perceptrons.<n>We propose a novel KAN variant by replacing both the inner and outer functions in the Kolmogorov-Arnold representation with weighted sinusoidal functions of learnable frequencies.<n>Inspired by simplifications introduced by Lorentz and Sprecher, we fix the phases of the sinusoidal activations to linearly spaced constant values and provide a proof of its theoretical validity.
arXiv Detail & Related papers (2025-08-01T01:16:09Z) - The Spectral Bias of Shallow Neural Network Learning is Shaped by the Choice of Non-linearity [0.7499722271664144]
We study how non-linear activation functions contribute to shaping neural networks' implicit bias.<n>We show that local dynamical attractors facilitate the formation of clusters of hyperplanes where the input to a neuron's activation function is zero.
arXiv Detail & Related papers (2025-03-13T17:36:46Z) - Parametric Leaky Tanh: A New Hybrid Activation Function for Deep
Learning [0.0]
Activation functions (AFs) are crucial components of deep neural networks (DNNs)
We propose a novel hybrid activation function designed to combine the strengths of both the Tanh and Leaky ReLU activation functions.
PLanh is differentiable at all points and addresses the 'dying ReLU' problem by ensuring a non-zero gradient for negative inputs.
arXiv Detail & Related papers (2023-08-11T08:59:27Z) - D4FT: A Deep Learning Approach to Kohn-Sham Density Functional Theory [79.50644650795012]
We propose a deep learning approach to solve Kohn-Sham Density Functional Theory (KS-DFT)
We prove that such an approach has the same expressivity as the SCF method, yet reduces the computational complexity.
In addition, we show that our approach enables us to explore more complex neural-based wave functions.
arXiv Detail & Related papers (2023-03-01T10:38:10Z) - Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais [0.0]
We propose the use of a family of free parameter asymmetric activation functions for neural networks.
We show that this family of defined activation functions satisfies the requirements of the universal approximation theorem.
A methodology for the global optimization of this family of activation functions with free parameter and the weights of the connections between the processing units of the neural network is used.
arXiv Detail & Related papers (2021-07-29T23:32:15Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Theory of gating in recurrent neural networks [5.672132510411465]
Recurrent neural networks (RNNs) are powerful dynamical models, widely used in machine learning (ML) and neuroscience.
Here, we show that gating offers flexible control of two salient features of the collective dynamics.
The gate controlling timescales leads to a novel, marginally stable state, where the network functions as a flexible integrator.
arXiv Detail & Related papers (2020-07-29T13:20:58Z) - Automated and Sound Synthesis of Lyapunov Functions with SMT Solvers [70.70479436076238]
We synthesise Lyapunov functions for linear, non-linear (polynomial) and parametric models.
We exploit an inductive framework to synthesise Lyapunov functions, starting from parametric templates.
arXiv Detail & Related papers (2020-07-21T14:45:23Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - Formal Synthesis of Lyapunov Neural Networks [61.79595926825511]
We propose an automatic and formally sound method for synthesising Lyapunov functions.
We employ a counterexample-guided approach where a numerical learner and a symbolic verifier interact to construct provably correct Lyapunov neural networks.
Our method synthesises Lyapunov functions faster and over wider spatial domains than the alternatives, yet providing stronger or equal guarantees.
arXiv Detail & Related papers (2020-03-19T17:21:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.