Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais
- URL: http://arxiv.org/abs/2107.14370v1
- Date: Thu, 29 Jul 2021 23:32:15 GMT
- Title: Otimizacao de pesos e funcoes de ativacao de redes neurais aplicadas na
previsao de series temporais
- Authors: Gecynalda Gomes, Teresa Ludermir
- Abstract summary: We propose the use of a family of free parameter asymmetric activation functions for neural networks.
We show that this family of defined activation functions satisfies the requirements of the universal approximation theorem.
A methodology for the global optimization of this family of activation functions with free parameter and the weights of the connections between the processing units of the neural network is used.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Networks have been applied for time series prediction with good
experimental results that indicate the high capacity to approximate functions
with good precision. Most neural models used in these applications use
activation functions with fixed parameters. However, it is known that the
choice of activation function strongly influences the complexity and
performance of the neural network and that a limited number of activation
functions have been used. In this work, we propose the use of a family of free
parameter asymmetric activation functions for neural networks and show that
this family of defined activation functions satisfies the requirements of the
universal approximation theorem. A methodology for the global optimization of
this family of activation functions with free parameter and the weights of the
connections between the processing units of the neural network is used. The
central idea of the proposed methodology is to simultaneously optimize the
weights and the activation function used in a multilayer perceptron network
(MLP), through an approach that combines the advantages of simulated annealing,
tabu search and a local learning algorithm, with the purpose of improving
performance in the adjustment and forecasting of time series. We chose two
learning algorithms: backpropagation with the term momentum (BPM) and
LevenbergMarquardt (LM).
Related papers
- The limitation of neural nets for approximation and optimization [0.0]
We are interested in assessing the use of neural networks as surrogate models to approximate and minimize objective functions in optimization problems.
Our study begins by determining the best activation function for approximating the objective functions of popular nonlinear optimization test problems.
arXiv Detail & Related papers (2023-11-21T00:21:15Z) - Pointer Networks with Q-Learning for Combinatorial Optimization [55.2480439325792]
We introduce the Pointer Q-Network (PQN), a hybrid neural architecture that integrates model-free Q-value policy approximation with Pointer Networks (Ptr-Nets)
Our empirical results demonstrate the efficacy of this approach, also testing the model in unstable environments.
arXiv Detail & Related papers (2023-11-05T12:03:58Z) - ENN: A Neural Network with DCT Adaptive Activation Functions [2.2713084727838115]
We present Expressive Neural Network (ENN), a novel model in which the non-linear activation functions are modeled using the Discrete Cosine Transform (DCT)
This parametrization keeps the number of trainable parameters low, is appropriate for gradient-based schemes, and adapts to different learning tasks.
The performance of ENN outperforms state of the art benchmarks, providing above a 40% gap in accuracy in some scenarios.
arXiv Detail & Related papers (2023-07-02T21:46:30Z) - Promises and Pitfalls of the Linearized Laplace in Bayesian Optimization [73.80101701431103]
The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks.
We study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility.
arXiv Detail & Related papers (2023-04-17T14:23:43Z) - Bayesian optimization for sparse neural networks with trainable
activation functions [0.0]
We propose a trainable activation function whose parameters need to be estimated.
A fully Bayesian model is developed to automatically estimate from the learning data both the model weights and activation function parameters.
arXiv Detail & Related papers (2023-04-10T08:44:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Consensus Function from an $L_p^q-$norm Regularization Term for its Use
as Adaptive Activation Functions in Neural Networks [0.0]
We propose the definition and utilization of an implicit, parametric, non-linear activation function that adapts its shape during the training process.
This fact increases the space of parameters to optimize within the network, but it allows a greater flexibility and generalizes the concept of neural networks.
Preliminary results show that the use of these neural networks with this type of adaptive activation functions reduces the error in regression and classification examples.
arXiv Detail & Related papers (2022-06-30T04:48:14Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Data-Driven Learning of Feedforward Neural Networks with Different
Activation Functions [0.0]
This work contributes to the development of a new data-driven method (D-DM) of feedforward neural networks (FNNs) learning.
arXiv Detail & Related papers (2021-07-04T18:20:27Z) - UNIPoint: Universally Approximating Point Processes Intensities [125.08205865536577]
We provide a proof that a class of learnable functions can universally approximate any valid intensity function.
We implement UNIPoint, a novel neural point process model, using recurrent neural networks to parameterise sums of basis function upon each event.
arXiv Detail & Related papers (2020-07-28T09:31:56Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.