Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
- URL: http://arxiv.org/abs/2508.01191v2
- Date: Tue, 05 Aug 2025 10:11:02 GMT
- Title: Is Chain-of-Thought Reasoning of LLMs a Mirage? A Data Distribution Lens
- Authors: Chengshuai Zhao, Zhen Tan, Pingchuan Ma, Dawei Li, Bohan Jiang, Yancheng Wang, Yingzhen Yang, Huan Liu,
- Abstract summary: Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks.<n>However, some initial findings suggest that CoT reasoning may be more superficial than it appears.
- Score: 23.326813303795692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Chain-of-Thought (CoT) prompting has been shown to improve Large Language Model (LLM) performance on various tasks. With this approach, LLMs appear to produce human-like reasoning steps before providing answers (a.k.a., CoT reasoning), which often leads to the perception that they engage in deliberate inferential processes. However, some initial findings suggest that CoT reasoning may be more superficial than it appears, motivating us to explore further. In this paper, we study CoT reasoning via a data distribution lens and investigate if CoT reasoning reflects a structured inductive bias learned from in-distribution data, allowing the model to conditionally generate reasoning paths that approximate those seen during training. Thus, its effectiveness is fundamentally bounded by the degree of distribution discrepancy between the training data and the test queries. With this lens, we dissect CoT reasoning via three dimensions: task, length, and format. To investigate each dimension, we design DataAlchemy, an isolated and controlled environment to train LLMs from scratch and systematically probe them under various distribution conditions. Our results reveal that CoT reasoning is a brittle mirage that vanishes when it is pushed beyond training distributions. This work offers a deeper understanding of why and when CoT reasoning fails, emphasizing the ongoing challenge of achieving genuine and generalizable reasoning.
Related papers
- A Closer Look at Bias and Chain-of-Thought Faithfulness of Large (Vision) Language Models [53.18562650350898]
Chain-of-thought (CoT) reasoning enhances performance of large language models.<n>We present the first comprehensive study of CoT faithfulness in large vision-language models.
arXiv Detail & Related papers (2025-05-29T18:55:05Z) - Fractured Chain-of-Thought Reasoning [61.647243580650446]
We introduce Fractured Sampling, a unified inference-time strategy that interpolates between full CoT and solution-only sampling.<n>We show that Fractured Sampling consistently achieves superior accuracy-cost trade-offs, yielding steep log-linear scaling gains in Pass@k versus token budget.
arXiv Detail & Related papers (2025-05-19T11:30:41Z) - Critical-Questions-of-Thought: Steering LLM reasoning with Argumentative Querying [0.3659498819753633]
State-of-the-art Large Language models (LLMs) continue to struggle when performing logical and mathematical reasoning.<n>This paper makes use of the notion of critical questions from the literature on argumentation theory, focusing in particular on Toulmin's model of argumentation.<n>We show that employing these critical questions can improve the reasoning capabilities of LLMs.
arXiv Detail & Related papers (2024-12-19T18:51:30Z) - Understanding Chain-of-Thought in LLMs through Information Theory [16.78730663293352]
We formalize Chain-of-Thought (CoT) reasoning in Large Language Models (LLMs) through an information-theoretic lens.<n>Specifically, our framework quantifies the information-gain' at each reasoning step, enabling the identification of failure modes.<n>We demonstrate the efficacy of our approach through extensive experiments on toy arithmetic, GSM8K and PRM800k datasets.
arXiv Detail & Related papers (2024-11-18T19:14:36Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
Chain-of-Thought (CoT) prompting and its variants have gained popularity as effective methods for solving multi-step reasoning problems.
We analyze CoT prompting from a statistical estimation perspective, providing a comprehensive characterization of its sample complexity.
arXiv Detail & Related papers (2024-08-25T04:07:18Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
Large language models (LLMs) demonstrate strong reasoning abilities when prompted to generate chain-of-thought explanations alongside answers.
We propose a novel discriminative and generative CoT evaluation paradigm to assess LLMs' knowledge of reasoning and the accuracy of the generated CoT.
arXiv Detail & Related papers (2024-02-17T05:22:56Z) - Understanding Reasoning Ability of Language Models From the Perspective of Reasoning Paths Aggregation [110.71955853831707]
We view LMs as deriving new conclusions by aggregating indirect reasoning paths seen at pre-training time.
We formalize the reasoning paths as random walk paths on the knowledge/reasoning graphs.
Experiments and analysis on multiple KG and CoT datasets reveal the effect of training on random walk paths.
arXiv Detail & Related papers (2024-02-05T18:25:51Z) - The Impact of Reasoning Step Length on Large Language Models [40.546685248243534]
Chain of Thought (CoT) is significant in improving the reasoning abilities of large language models.
We investigate the correlation between the effectiveness of CoT and the length of reasoning steps in prompts.
arXiv Detail & Related papers (2024-01-10T04:37:38Z) - Measuring Faithfulness in Chain-of-Thought Reasoning [19.074147845029355]
Large language models (LLMs) perform better when they produce step-by-step, "Chain-of-Thought" (CoT) reasoning before answering a question.
It is unclear if the stated reasoning is a faithful explanation of the model's actual reasoning (i.e., its process for answering the question)
We investigate hypotheses for how CoT reasoning may be unfaithful, by examining how the model predictions change when we intervene on the CoT.
arXiv Detail & Related papers (2023-07-17T01:08:39Z) - Towards Understanding Chain-of-Thought Prompting: An Empirical Study of
What Matters [82.84696222087396]
Chain-of-Thought (CoT) prompting can dramatically improve the multi-step reasoning abilities of large language models (LLMs)
We show that CoT reasoning is possible even with invalid demonstrations.
arXiv Detail & Related papers (2022-12-20T05:20:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.