論文の概要: Calibrated Prediction Set in Fault Detection with Risk Guarantees via Significance Tests
- arxiv url: http://arxiv.org/abs/2508.01208v1
- Date: Sat, 02 Aug 2025 05:49:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.756746
- Title: Calibrated Prediction Set in Fault Detection with Risk Guarantees via Significance Tests
- Title(参考訳): 重要度試験によるリスク保証による故障検出の校正予測セット
- Authors: Mingchen Mei, Yi Li, YiYao Qian, Zijun Jia,
- Abstract要約: 本稿では,形式的リスク保証を提供するために,コンフォメーション予測フレームワークと重要度テストを統合した新しい故障検出手法を提案する。
提案手法は,名目レベル以上の経験的カバレッジ率(1-alpha$)を一貫して達成する。
その結果、ユーザ定義のリスクレベル(alpha$)と効率の間のコントロール可能なトレードオフが明らかとなり、より高いリスク耐性が平均予測セットのサイズを小さくする。
- 参考スコア(独自算出の注目度): 3.500936878570599
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault detection is crucial for ensuring the safety and reliability of modern industrial systems. However, a significant scientific challenge is the lack of rigorous risk control and reliable uncertainty quantification in existing diagnostic models, particularly when facing complex scenarios such as distributional shifts. To address this issue, this paper proposes a novel fault detection method that integrates significance testing with the conformal prediction framework to provide formal risk guarantees. The method transforms fault detection into a hypothesis testing task by defining a nonconformity measure based on model residuals. It then leverages a calibration dataset to compute p-values for new samples, which are used to construct prediction sets mathematically guaranteed to contain the true label with a user-specified probability, $1-\alpha$. Fault classification is subsequently performed by analyzing the intersection of the constructed prediction set with predefined normal and fault label sets. Experimental results on cross-domain fault diagnosis tasks validate the theoretical properties of our approach. The proposed method consistently achieves an empirical coverage rate at or above the nominal level ($1-\alpha$), demonstrating robustness even when the underlying point-prediction models perform poorly. Furthermore, the results reveal a controllable trade-off between the user-defined risk level ($\alpha$) and efficiency, where higher risk tolerance leads to smaller average prediction set sizes. This research contributes a theoretically grounded framework for fault detection that enables explicit risk control, enhancing the trustworthiness of diagnostic systems in safety-critical applications and advancing the field from simple point predictions to informative, uncertainty-aware outputs.
- Abstract(参考訳): 故障検出は、現代の産業システムの安全性と信頼性を確保するために不可欠である。
しかし、科学的に重要な課題は、特に分布シフトのような複雑なシナリオに直面している場合、既存の診断モデルにおける厳密なリスク制御と確実な不確実性定量化の欠如である。
そこで本研究では, コンフォーマルなリスク保証を実現するために, コンフォーマルな予測フレームワークと重要度テストを統合した新しい故障検出手法を提案する。
モデル残差に基づいて非整合度尺度を定義することにより、故障検出を仮説テストタスクに変換する。
次に、キャリブレーションデータセットを利用して、新しいサンプルのp値を計算する。これは、ユーザーが指定した確率である1-\alpha$を持つ真のラベルを含むように数学的に保証された予測セットを構築するために使用される。
その後、予め定義された正規および故障ラベルセットで構築された予測セットの交点を分析することにより、故障分類を行う。
クロスドメイン断層診断タスクの実験結果から, 提案手法の理論的特性を検証した。
提案手法は名目レベル(1-\alpha$)以上の経験的カバレッジ率を一貫して達成し,基礎となる点予測モデルが不十分な場合にも頑健性を示す。
さらに、ユーザ定義のリスクレベル($\alpha$)と効率の間の制御可能なトレードオフを明らかにし、より高いリスク耐性が平均予測セットのサイズを小さくする。
本研究は, 安全クリティカルなアプリケーションにおける診断システムの信頼性を高め, 簡単な点予測から, 情報的かつ不確実な出力まで分野を前進させる, 明確なリスク制御を可能にする, 故障検出のための理論的基盤となる枠組みを提供する。
関連論文リスト
- COIN: Uncertainty-Guarding Selective Question Answering for Foundation Models with Provable Risk Guarantees [51.5976496056012]
COINは、統計的に有効な閾値を校正し、質問毎に1つの生成された回答をフィルタリングする不確実性保護選択フレームワークである。
COINはキャリブレーションセット上で経験的誤差率を推定し、信頼区間法を適用して真誤差率に高い確率上界を確立する。
リスク管理におけるCOINの堅牢性,許容回答を維持するための強いテストタイムパワー,キャリブレーションデータによる予測効率を実証する。
論文 参考訳(メタデータ) (2025-06-25T07:04:49Z) - Conformal Segmentation in Industrial Surface Defect Detection with Statistical Guarantees [2.0257616108612373]
工業環境では、鋼の表面欠陥はサービス寿命を著しく損なうことができ、潜在的な安全リスクを高めることができる。
従来の欠陥検出手法は主に手動検査に依存しており、これは低効率と高コストに悩まされている。
ユーザ定義のリスクレベルに基づいて統計的に厳密なしきい値を作成し、テスト画像の高確率欠陥画素を同定する。
種々のキャリブレーションとテストの比率で予測されるテストセット誤差率に対する頑健かつ効率的な制御を実証する。
論文 参考訳(メタデータ) (2025-04-24T16:33:56Z) - Data-Driven Calibration of Prediction Sets in Large Vision-Language Models Based on Inductive Conformal Prediction [0.0]
動的しきい値キャリブレーションとクロスモーダル整合性検証を統合したモデル非依存不確実性定量化法を提案する。
このフレームワークは、様々なキャリブレーションとテストの分割比で安定したパフォーマンスを実現し、医療、自律システム、その他の安全に敏感な領域における現実的な展開の堅牢性を強調している。
この研究は、マルチモーダルAIシステムにおける理論的信頼性と実用性の間のギャップを埋め、幻覚検出と不確実性を考慮した意思決定のためのスケーラブルなソリューションを提供する。
論文 参考訳(メタデータ) (2025-04-24T15:39:46Z) - TrustLoRA: Low-Rank Adaptation for Failure Detection under Out-of-distribution Data [62.22804234013273]
本稿では,共変量および意味的シフトの両条件下での拒絶による分類を統一し,促進する,単純な故障検出フレームワークを提案する。
キーとなる洞察は、障害固有の信頼性知識を低ランクアダプタで分離し、統合することにより、障害検出能力を効果的かつ柔軟に向上できるということです。
論文 参考訳(メタデータ) (2025-04-20T09:20:55Z) - SConU: Selective Conformal Uncertainty in Large Language Models [59.25881667640868]
SconU(Selective Conformal Uncertainity)と呼ばれる新しいアプローチを提案する。
我々は,特定の管理可能なリスクレベルで設定されたキャリブレーションの不確実性分布から,与えられたサンプルが逸脱するかどうかを決定するのに役立つ2つの共形p値を開発する。
我々のアプローチは、単一ドメインと学際的コンテキストの両方にわたる誤発見率の厳密な管理を促進するだけでなく、予測の効率を高める。
論文 参考訳(メタデータ) (2025-04-19T03:01:45Z) - Coverage-Guaranteed Speech Emotion Recognition via Calibrated Uncertainty-Adaptive Prediction Sets [0.0]
しばしば感情的な抑圧と突然のアウトバーストによって引き起こされる道路の怒りは、衝突や攻撃的な行動を引き起こすことによって道路の安全を著しく脅かす。
音声感情認識技術は、ネガティブな感情を早期に識別し、タイムリーな警告を発することにより、このリスクを軽減することができる。
本稿では,予測精度を統計的に厳格に保証するリスク制御予測フレームワークを提案する。
論文 参考訳(メタデータ) (2025-03-24T12:26:28Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Leave-One-Out-, Bootstrap- and Cross-Conformal Anomaly Detectors [0.0]
本研究では,異常検出のためのLeft-out-out-, bootstrap-, cross-conformalメソッドを正式に定義し,評価する。
我々は,再サンプリング・コンフォーマルな$p$-値を求める導出手法が,統計効率(全コンフォーマル)と計算効率(スプリット・コンフォーマル)の両立を図っていることを実証した。
論文 参考訳(メタデータ) (2024-02-26T08:22:40Z) - B-BACN: Bayesian Boundary-Aware Convolutional Network for Crack
Characterization [4.447467536572625]
き裂検出の不確かさは, 測定ノイズ, 信号処理, モデルの単純化など, 様々な要因により困難である。
機械学習に基づくアプローチは、不確実性とアレタリック不確実性の両方を同時に定量化するために提案される。
本稿では,不確実性を考慮した境界修正を重視したBundary-Aware Convolutional Network(B-BACN)を提案する。
論文 参考訳(メタデータ) (2023-02-14T04:50:42Z) - A Review of Uncertainty Calibration in Pretrained Object Detectors [5.440028715314566]
多クラス設定における事前訓練対象検出アーキテクチャの不確実性校正特性について検討する。
公平でバイアスのない,繰り返し可能な評価を実現するためのフレームワークを提案する。
検出器のキャリブレーションが低い理由について、新しい知見を提供する。
論文 参考訳(メタデータ) (2022-10-06T14:06:36Z) - Bayesian autoencoders with uncertainty quantification: Towards
trustworthy anomaly detection [78.24964622317634]
本研究では, ベイズオートエンコーダ (BAEs) の定式化により, 全体の異常不確かさを定量化する。
不確実性の質を評価するために,不確実性の予測を拒否するオプションを追加して,異常を分類する作業を検討する。
本実験は,BAEと総異常不確かさが,ベンチマークデータセットと製造用実データセットのセットに与える影響を実証するものである。
論文 参考訳(メタデータ) (2022-02-25T12:20:04Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。