論文の概要: OCSplats: Observation Completeness Quantification and Label Noise Separation in 3DGS
- arxiv url: http://arxiv.org/abs/2508.01239v1
- Date: Sat, 02 Aug 2025 07:24:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.779616
- Title: OCSplats: Observation Completeness Quantification and Label Noise Separation in 3DGS
- Title(参考訳): OCSplats:3DGSにおける完全性定量とラベルノイズ分離の観測
- Authors: Han Ling, Xian Xu, Yinghui Sun, Quansen Sun,
- Abstract要約: 既存の3DGS-Bsedアンチノイズ再構成法では、ノイズを効果的に分離できない。
本稿では,ハイブリッドノイズアセスメントと観測に基づく認知補正を組み合わせた新しい枠組みであるOCSplatsを提案する。
OCSplatは、複雑さの異なるシーンにおいて、常に先行する再構成性能と正確なラベルノイズ分類を実現する。
- 参考スコア(独自算出の注目度): 17.12674671784636
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: 3D Gaussian Splatting (3DGS) has become one of the most promising 3D reconstruction technologies. However, label noise in real-world scenarios-such as moving objects, non-Lambertian surfaces, and shadows-often leads to reconstruction errors. Existing 3DGS-Bsed anti-noise reconstruction methods either fail to separate noise effectively or require scene-specific fine-tuning of hyperparameters, making them difficult to apply in practice. This paper re-examines the problem of anti-noise reconstruction from the perspective of epistemic uncertainty, proposing a novel framework, OCSplats. By combining key technologies such as hybrid noise assessment and observation-based cognitive correction, the accuracy of noise classification in areas with cognitive differences has been significantly improved. Moreover, to address the issue of varying noise proportions in different scenarios, we have designed a label noise classification pipeline based on dynamic anchor points. This pipeline enables OCSplats to be applied simultaneously to scenarios with vastly different noise proportions without adjusting parameters. Extensive experiments demonstrate that OCSplats always achieve leading reconstruction performance and precise label noise classification in scenes of different complexity levels.
- Abstract(参考訳): 3D Gaussian Splatting (3DGS)は、最も有望な3D再構築技術の一つとなっている。
しかし、現実のシナリオにおけるラベルノイズ(移動物体、非ランベルト面、しばしば影など)は、再構成エラーを引き起こす。
既存の3DGS-Bsedアンチノイズ再構成法は、ノイズを効果的に分離できないか、あるいはシーン固有のハイパーパラメータの微調整を必要とするかのいずれかであり、実際に適用することは困難である。
本稿では, 新たな枠組みであるOCSplatを提唱し, 疫学的不確実性の観点から, 抗ノイズ再建の問題点を再検討する。
ハイブリッドノイズアセスメントや観察に基づく認知補正といった重要な技術を組み合わせることで、認知的差異のある領域におけるノイズ分類の精度が大幅に向上した。
さらに,異なるシナリオにおける雑音比の変動に対処するため,動的アンカー点に基づくラベルノイズ分類パイプラインを設計した。
このパイプラインは、パラメータを調整することなく、非常に異なるノイズ比のシナリオにOCSplatを同時に適用することを可能にする。
拡張実験により, OCSplat は, 複雑さの異なるシーンにおいて, 常に先行する再構成性能と正確なラベルノイズ分類を実現することが示された。
関連論文リスト
- Machine Unlearning for Robust DNNs: Attribution-Guided Partitioning and Neuron Pruning in Noisy Environments [5.8166742412657895]
ディープニューラルネットワーク(DNN)は、さまざまなドメインで顕著な成功を収めているが、ノイズやトレーニングデータによってそのパフォーマンスが著しく低下する可能性がある。
本稿では,帰属誘導型データパーティショニング,識別的ニューロンプルーニング,およびノイズのあるサンプルの影響を軽減するための微調整を目的とした新しいフレームワークを提案する。
CIFAR-10の標準リトレーニングよりも約10%の絶対精度向上を実現し,ラベルノイズを注入した。
論文 参考訳(メタデータ) (2025-06-13T09:37:11Z) - Noise Augmented Fine Tuning for Mitigating Hallucinations in Large Language Models [1.0579965347526206]
大規模言語モデル(LLM)は、しばしば不正確な、または誤解を招くコンテンツ・ハロシンを生成する。
noise-Augmented Fine-Tuning (NoiseFiT) は適応ノイズ注入を利用してモデルロバスト性を高める新しいフレームワークである。
NoiseFiTは、動的にスケールしたガウス雑音を用いて、高SNR(より堅牢)または低SNR(潜在的に過正規化)と同定された層を選択的に摂動する。
論文 参考訳(メタデータ) (2025-04-04T09:27:19Z) - Scalable Benchmarking and Robust Learning for Noise-Free Ego-Motion and 3D Reconstruction from Noisy Video [30.89206445146674]
ノイズフリーデータへの依存という限界に対処することで、ロバストなエゴモーション推定とフォトリアリスティックな3D再構成を再定義することを目指している。
スケーラブルなデータ生成、包括的な堅牢性、モデルの強化という3つの課題に取り組んでいます。
Robust-Ego3Dという,ノイズによるパフォーマンス劣化の顕在化を目的としたベンチマークを作成しました。
論文 参考訳(メタデータ) (2025-01-24T08:25:48Z) - T-3DGS: Removing Transient Objects for 3D Scene Reconstruction [83.05271859398779]
映像シーケンスにおける過渡的オブジェクトは、3Dシーン再構成の品質を著しく低下させる可能性がある。
我々は,ガウススプラッティングを用いた3次元再構成において,過渡的障害を頑健に除去する新しいフレームワークT-3DGSを提案する。
論文 参考訳(メタデータ) (2024-11-29T07:45:24Z) - From Chaos to Clarity: 3DGS in the Dark [28.232432162734437]
未処理の生画像のノイズは、3次元シーン表現の精度を損なう。
3D Gaussian Splatting (3DGS)はこのノイズに特に影響を受けやすい。
ノイズの多い生画像からHDR 3DGSを再構成するための,新しい自己教師型学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-12T15:00:16Z) - LP-3DGS: Learning to Prune 3D Gaussian Splatting [71.97762528812187]
本稿では,トレーニング可能な2値マスクを重要度に応用し,最適プルーニング比を自動的に検出する3DGSを提案する。
実験の結果,LP-3DGSは効率と高品質の両面において良好なバランスを保っていることがわかった。
論文 参考訳(メタデータ) (2024-05-29T05:58:34Z) - Latent Class-Conditional Noise Model [54.56899309997246]
本稿では,ベイズ的枠組みの下での雑音遷移をパラメータ化するためのLatent Class-Conditional Noise Model (LCCN)を提案する。
次に、Gibs sampler を用いて遅延真のラベルを効率的に推測できる LCCN の動的ラベル回帰法を導出する。
提案手法は,サンプルのミニバッチから事前の任意チューニングを回避するため,ノイズ遷移の安定な更新を保護している。
論文 参考訳(メタデータ) (2023-02-19T15:24:37Z) - Improve Noise Tolerance of Robust Loss via Noise-Awareness [60.34670515595074]
本稿では,NARL-Adjuster(NARL-Adjuster for brevity)と呼ばれる,ハイパーパラメータ予測関数を適応的に学習するメタラーニング手法を提案する。
4つのSOTAロバストな損失関数を我々のアルゴリズムに統合し,提案手法の一般性および性能をノイズ耐性と性能の両面で検証した。
論文 参考訳(メタデータ) (2023-01-18T04:54:58Z) - Treatment Learning Causal Transformer for Noisy Image Classification [62.639851972495094]
本研究では,この2値情報「ノイズの存在」を画像分類タスクに組み込んで予測精度を向上させる。
因果的変動推定から動機付け,雑音画像分類のための頑健な特徴表現を潜在生成モデルを用いて推定するトランスフォーマーに基づくアーキテクチャを提案する。
また、パフォーマンスベンチマークのための幅広いノイズ要素を取り入れた、新しいノイズの多い画像データセットも作成する。
論文 参考訳(メタデータ) (2022-03-29T13:07:53Z) - Non-Local Part-Aware Point Cloud Denoising [55.50360085086123]
本稿では,点群を識別する非局所部分認識ディープニューラルネットワークを提案する。
グラフアテンションモジュールでカスタマイズした非局所学習ユニット(NLU)を設計し、非局所意味論的特徴を適応的にキャプチャする。
雑音発生性能を向上させるため,ノイズ特性をノイズ入力から段階的に抽出するために,一連のNLUをカスケードする。
論文 参考訳(メタデータ) (2020-03-14T13:51:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。