Open-Attribute Recognition for Person Retrieval: Finding People Through Distinctive and Novel Attributes
- URL: http://arxiv.org/abs/2508.01389v2
- Date: Tue, 05 Aug 2025 14:18:01 GMT
- Title: Open-Attribute Recognition for Person Retrieval: Finding People Through Distinctive and Novel Attributes
- Authors: Minjeong Park, Hongbeen Park, Sangwon Lee, Yoonha Jang, Jinkyu Kim,
- Abstract summary: The Open-Attribute Recognition for Person Retrieval (OAPR) task aims to retrieve individuals based on attribute cues, regardless of whether those attributes were seen during training.<n>We introduce a novel framework designed to learn generalizable body part representations that cover a broad range of attribute categories.<n>We reconstruct four widely used datasets for open-attribute recognition.
- Score: 9.929323990441576
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pedestrian Attribute Recognition (PAR) plays a crucial role in various vision tasks such as person retrieval and identification. Most existing attribute-based retrieval methods operate under the closed-set assumption that all attribute classes are consistently available during both training and inference. However, this assumption limits their applicability in real-world scenarios where novel attributes may emerge. Moreover, predefined attributes in benchmark datasets are often generic and shared across individuals, making them less discriminative for retrieving the target person. To address these challenges, we propose the Open-Attribute Recognition for Person Retrieval (OAPR) task, which aims to retrieve individuals based on attribute cues, regardless of whether those attributes were seen during training. To support this task, we introduce a novel framework designed to learn generalizable body part representations that cover a broad range of attribute categories. Furthermore, we reconstruct four widely used datasets for open-attribute recognition. Comprehensive experiments on these datasets demonstrate the necessity of the OAPR task and the effectiveness of our framework. The source code and pre-trained models will be publicly available upon publication.
Related papers
- LATex: Leveraging Attribute-based Text Knowledge for Aerial-Ground Person Re-Identification [63.07563443280147]
We propose a novel framework named LATex for AG-ReID.<n>It adopts prompt-tuning strategies to leverage attribute-based text knowledge.<n>Our framework can fully leverage attribute-based text knowledge to improve the AG-ReID.
arXiv Detail & Related papers (2025-03-31T04:47:05Z) - A Quantitative Evaluation of the Expressivity of BMI, Pose and Gender in Body Embeddings for Recognition and Identification [56.10719736365069]
We extend the notion of expressivity, defined as the mutual information between learned features and specific attributes, to quantify how strongly attributes are encoded.<n>We find that BMI consistently shows the highest expressivity in the final layers, indicating its dominant role in recognition.<n>These findings demonstrate the central role of body attributes in ReID and establish a principled approach for uncovering attribute driven correlations.
arXiv Detail & Related papers (2025-03-09T05:15:54Z) - Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks [21.813755593742858]
Biased attributes, spuriously correlated with target labels in a dataset, can problematically lead to neural networks that learn improper shortcuts for classifications.
We propose a novel debiasing framework, Debiasing Global Workspace, introducing attention-based information bottlenecks for learning compositional representations of attributes.
We conduct comprehensive evaluations on biased datasets, along with both quantitative and qualitative analyses, to showcase our approach's efficacy.
arXiv Detail & Related papers (2024-03-21T05:33:49Z) - A Solution to Co-occurrence Bias: Attributes Disentanglement via Mutual
Information Minimization for Pedestrian Attribute Recognition [10.821982414387525]
We show that current methods can actually suffer in generalizing such fitted attributes interdependencies onto scenes or identities off the dataset distribution.
To render models robust in realistic scenes, we propose the attributes-disentangled feature learning to ensure the recognition of an attribute not inferring on the existence of others.
arXiv Detail & Related papers (2023-07-28T01:34:55Z) - OvarNet: Towards Open-vocabulary Object Attribute Recognition [42.90477523238336]
We propose a naive two-stage approach for open-vocabulary object detection and attribute classification, termed CLIP-Attr.
The candidate objects are first proposed with an offline RPN and later classified for semantic category and attributes.
We show that recognition of semantic category and attributes is complementary for visual scene understanding.
arXiv Detail & Related papers (2023-01-23T15:59:29Z) - UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval [4.6193503399184275]
We present UPAR, the Unified Person Attribute Recognition dataset.
It is based on four well-known person attribute recognition datasets: PA100k, PETA, RAPv2, and Market1501.
We unify those datasets by providing 3,3M additional annotations to harmonize 40 important binary attributes over 12 attribute categories.
arXiv Detail & Related papers (2022-09-06T14:20:56Z) - OA-Mine: Open-World Attribute Mining for E-Commerce Products with Weak
Supervision [93.26737878221073]
We study the attribute mining problem in an open-world setting to extract novel attributes and their values.
We propose a principled framework that first generates attribute value candidates and then groups them into clusters of attributes.
Our model significantly outperforms strong baselines and can generalize to unseen attributes and product types.
arXiv Detail & Related papers (2022-04-29T04:16:04Z) - Attribute Prototype Network for Any-Shot Learning [113.50220968583353]
We argue that an image representation with integrated attribute localization ability would be beneficial for any-shot, i.e. zero-shot and few-shot, image classification tasks.
We propose a novel representation learning framework that jointly learns global and local features using only class-level attributes.
arXiv Detail & Related papers (2022-04-04T02:25:40Z) - Make an Omelette with Breaking Eggs: Zero-Shot Learning for Novel
Attribute Synthesis [65.74825840440504]
We propose Zero Shot Learning for Attributes (ZSLA), which is the first of its kind to the best of our knowledge.
Our proposed method is able to synthesize the detectors of novel attributes in a zero-shot learning manner.
With using only 32 seen attributes on the Caltech-UCSD Birds-200-2011 dataset, our proposed method is able to synthesize other 207 novel attributes.
arXiv Detail & Related papers (2021-11-28T15:45:54Z) - Learning Compositional Representation for Few-shot Visual Question
Answering [93.4061107793983]
Current methods of Visual Question Answering perform well on the answers with an amount of training data but have limited accuracy on the novel ones with few examples.
We propose to extract the attributes from the answers with enough data, which are later composed to constrain the learning of the few-shot ones.
Experimental results on the VQA v2.0 validation dataset demonstrate the effectiveness of our proposed attribute network.
arXiv Detail & Related papers (2021-02-21T10:16:24Z) - An Empirical Study of Person Re-Identification with Attributes [15.473033192858543]
In this paper, an attribute-based approach is proposed where the person of interest is described by a set of visual attributes.
We compare multiple algorithms and analyze how the quality of attributes impacts the performance.
A key conclusion is that the performance achieved by non-expert attributes, instead of expert-annotated ones, is a more faithful indicator of the status quo of attribute-based approaches for person re-identification.
arXiv Detail & Related papers (2020-01-25T22:18:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.