Spatial-Frequency Aware for Object Detection in RAW Image
- URL: http://arxiv.org/abs/2508.01396v2
- Date: Wed, 06 Aug 2025 14:26:27 GMT
- Title: Spatial-Frequency Aware for Object Detection in RAW Image
- Authors: Zhuohua Ye, Liming Zhang, Hongru Han,
- Abstract summary: Direct RAW-based object detection faces inherent challenges due to its wide dynamic range and linear response.<n>We propose Space-Frequency Aware RAW Image Object Detection Enhancer (SFAE), a novel framework that synergizes spatial and frequency representations.
- Score: 2.7577617321294703
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct RAW-based object detection offers great promise by utilizing RAW data (unprocessed sensor data), but faces inherent challenges due to its wide dynamic range and linear response, which tends to suppress crucial object details. In particular, existing enhancement methods are almost all performed in the spatial domain, making it difficult to effectively recover these suppressed details from the skewed pixel distribution of RAW images. To address this limitation, we turn to the frequency domain, where features, such as object contours and textures, can be naturally separated based on frequency. In this paper, we propose Space-Frequency Aware RAW Image Object Detection Enhancer (SFAE), a novel framework that synergizes spatial and frequency representations. Our contribution is threefold. The first lies in the ``spatialization" of frequency bands. Different from the traditional paradigm of directly manipulating abstract spectra in deep networks, our method inversely transforms individual frequency bands back into tangible spatial maps, thus preserving direct physical intuition. Then the cross-domain fusion attention module is developed to enable deep multimodal interactions between these maps and the original spatial features. Finally, the framework performs adaptive nonlinear adjustments by predicting and applying different gamma parameters for the two domains.
Related papers
- Wavelet-Guided Dual-Frequency Encoding for Remote Sensing Change Detection [67.84730634802204]
Change detection in remote sensing imagery plays a vital role in various engineering applications, such as natural disaster monitoring, urban expansion tracking, and infrastructure management.<n>Most existing methods still rely on spatial-domain modeling, where the limited diversity of feature representations hinders the detection of subtle change regions.<n>We observe that frequency-domain feature modeling particularly in the wavelet domain amplify fine-grained differences in frequency components, enhancing the perception of edge changes that are challenging to capture in the spatial domain.
arXiv Detail & Related papers (2025-08-07T11:14:16Z) - Freqformer: Image-Demoiréing Transformer via Efficient Frequency Decomposition [83.40450475728792]
We present Freqformer, a Transformer-based framework specifically designed for image demoir'eing through targeted frequency separation.<n>Our method performs an effective frequency decomposition that explicitly splits moir'e patterns into high-frequency spatially-localized textures and low-frequency scale-robust color distortions.<n>Experiments on various demoir'eing benchmarks demonstrate that Freqformer achieves state-of-the-art performance with a compact model size.
arXiv Detail & Related papers (2025-05-25T12:23:10Z) - Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design.
We propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method.
Our experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets.
arXiv Detail & Related papers (2024-09-03T07:58:47Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
We propose a novel learnable and separable frequency perception mechanism driven by the semantic hierarchy in the frequency domain.<n>Our entire network adopts a two-stage model, including a frequency-guided coarse localization stage and a detail-preserving fine localization stage.<n>Compared with the currently existing models, our proposed method achieves competitive performance in three popular benchmark datasets.
arXiv Detail & Related papers (2023-08-17T11:30:46Z) - Fast Fourier Convolution Based Remote Sensor Image Object Detection for
Earth Observation [0.0]
We propose a Frequency-aware Feature Pyramid Framework (FFPF) for remote sensing object detection.
F-ResNet is proposed to perceive the spectral context information by plugging the frequency domain convolution into each stage of the backbone.
The BSFPN is designed to use a bilateral sampling strategy and skipping connection to better model the association of object features at different scales.
arXiv Detail & Related papers (2022-09-01T15:50:58Z) - TBNet:Two-Stream Boundary-aware Network for Generic Image Manipulation
Localization [49.521622399483846]
We propose a novel end-to-end two-stream boundary-aware network (abbreviated as TBNet) for generic image manipulation localization.
The proposed TBNet can significantly outperform state-of-the-art generic image manipulation localization methods in terms of both MCC and F1.
arXiv Detail & Related papers (2021-08-10T08:22:05Z) - Wavelet-Based Network For High Dynamic Range Imaging [64.66969585951207]
Existing methods, such as optical flow based and end-to-end deep learning based solutions, are error-prone either in detail restoration or ghosting artifacts removal.
In this work, we propose a novel frequency-guided end-to-end deep neural network (FNet) to conduct HDR fusion in the frequency domain, and Wavelet Transform (DWT) is used to decompose inputs into different frequency bands.
The low-frequency signals are used to avoid specific ghosting artifacts, while the high-frequency signals are used for preserving details.
arXiv Detail & Related papers (2021-08-03T12:26:33Z) - Change Detection in Synthetic Aperture Radar Images Using a Dual-Domain
Network [33.50775914682585]
Change detection from synthetic aperture radar (SAR) imagery is a critical yet challenging task.
Existing methods mainly focus on feature extraction in spatial domain, and little attention has been paid to frequency domain.
We propose a Dual-Domain Network to tackle the above two challenges.
arXiv Detail & Related papers (2021-04-14T08:41:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.