EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer
- URL: http://arxiv.org/abs/2508.01465v1
- Date: Sat, 02 Aug 2025 18:52:59 GMT
- Title: EfficientGFormer: Multimodal Brain Tumor Segmentation via Pruned Graph-Augmented Transformer
- Authors: Fatemeh Ziaeetabar,
- Abstract summary: EfficientGFormer is a novel architecture that integrates pretrained foundation models with graph-based reasoning.<n> Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate and efficient brain tumor segmentation remains a critical challenge in neuroimaging due to the heterogeneous nature of tumor subregions and the high computational cost of volumetric inference. In this paper, we propose EfficientGFormer, a novel architecture that integrates pretrained foundation models with graph-based reasoning and lightweight efficiency mechanisms for robust 3D brain tumor segmentation. Our framework leverages nnFormer as a modality-aware encoder, transforming multi-modal MRI volumes into patch-level embeddings. These features are structured into a dual-edge graph that captures both spatial adjacency and semantic similarity. A pruned, edge-type-aware Graph Attention Network (GAT) enables efficient relational reasoning across tumor subregions, while a distillation module transfers knowledge from a full-capacity teacher to a compact student model for real-time deployment. Experiments on the MSD Task01 and BraTS 2021 datasets demonstrate that EfficientGFormer achieves state-of-the-art accuracy with significantly reduced memory and inference time, outperforming recent transformer-based and graph-based baselines. This work offers a clinically viable solution for fast and accurate volumetric tumor delineation, combining scalability, interpretability, and generalization.
Related papers
- Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor Segmentation (GMLN-BTS) in Edge Iterative MRI Lesion Localization System (EdgeIMLocSys) [6.451534509235736]
We propose the Edge Iterative MRI Lesion Localization System (EdgeIMLocSys), which integrates Continuous Learning from Human Feedback.<n>Central to this system is the Graph-based Multi-Modal Interaction Lightweight Network for Brain Tumor (GMLN-BTS)<n>Our proposed GMLN-BTS model achieves a Dice score of 85.1% on the BraTS 2017 dataset with only 4.58 million parameters, representing a 98% reduction compared to mainstream 3D Transformer models.
arXiv Detail & Related papers (2025-07-14T07:29:49Z) - Improved Brain Tumor Detection in MRI: Fuzzy Sigmoid Convolution in Deep Learning [5.350541719319564]
Fuzzy sigmoid convolution (FSC) is introduced along with two additional modules: top-of-the-funnel and middle-of-the-funnel.<n>A novel convolutional operator is central to this approach, effectively dilating the receptive field while preserving input data integrity.<n>This research offers lightweight, high-performance deep-learning models for medical imaging applications.
arXiv Detail & Related papers (2025-05-08T13:02:44Z) - MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
We propose MAST-Pro, a novel framework that integrates dynamic Mixture-of-Experts (D-MoE) and knowledge-driven prompts for pan-tumor segmentation.<n>Specifically, text and anatomical prompts provide domain-specific priors guiding tumor representation learning, while D-MoE dynamically selects experts to balance generic and tumor-specific feature learning.<n>Experiments on multi-anatomical tumor datasets demonstrate that MAST-Pro outperforms state-of-the-art approaches, achieving up to a 5.20% improvement in average improvement while reducing trainable parameters by 91.04%, without compromising accuracy.
arXiv Detail & Related papers (2025-03-18T15:39:44Z) - Enhancing Brain Tumor Segmentation Using Channel Attention and Transfer learning [5.062500255359342]
We present an enhanced ResUNet architecture for automatic brain tumor segmentation.<n>The EfficientNetB0 encoder leverages pre-trained features to improve feature extraction efficiency.<n>The channel attention mechanism enhances the model's focus on tumor-relevant features.
arXiv Detail & Related papers (2025-01-19T23:58:16Z) - MBDRes-U-Net: Multi-Scale Lightweight Brain Tumor Segmentation Network [0.0]
This study proposes the MBDRes-U-Net model using the three-dimensional (3D) U-Net framework, which integrates multibranch residual blocks and fused attention into the model.
The computational burden of the model is reduced by the branch strategy, which effectively uses the rich local features in multimodal images.
arXiv Detail & Related papers (2024-11-04T09:03:43Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI [58.809276442508256]
We propose a hybrid network via the combination of convolution neural network (CNN) and transformer layers.
The experimental results on private and public DCE-MRI datasets demonstrate that the proposed hybrid network superior performance than the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-11T15:46:00Z) - Learning from partially labeled data for multi-organ and tumor
segmentation [102.55303521877933]
We propose a Transformer based dynamic on-demand network (TransDoDNet) that learns to segment organs and tumors on multiple datasets.
A dynamic head enables the network to accomplish multiple segmentation tasks flexibly.
We create a large-scale partially labeled Multi-Organ and Tumor benchmark, termed MOTS, and demonstrate the superior performance of our TransDoDNet over other competitors.
arXiv Detail & Related papers (2022-11-13T13:03:09Z) - GLEAM: Greedy Learning for Large-Scale Accelerated MRI Reconstruction [50.248694764703714]
Unrolled neural networks have recently achieved state-of-the-art accelerated MRI reconstruction.
These networks unroll iterative optimization algorithms by alternating between physics-based consistency and neural-network based regularization.
We propose Greedy LEarning for Accelerated MRI reconstruction, an efficient training strategy for high-dimensional imaging settings.
arXiv Detail & Related papers (2022-07-18T06:01:29Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.