The Vanishing Gradient Problem for Stiff Neural Differential Equations
- URL: http://arxiv.org/abs/2508.01519v1
- Date: Sat, 02 Aug 2025 23:44:14 GMT
- Title: The Vanishing Gradient Problem for Stiff Neural Differential Equations
- Authors: Colby Fronk, Linda Petzold,
- Abstract summary: In stiff systems, it has been observed that sensitivities to parameters controlling fast-decaying modes become vanishingly small during training.<n>We show that this vanishing gradient phenomenon is not an artifact of any particular method, but a universal feature of all A-stable and L-stable stiff numerical integration schemes.
- Score: 3.941173292703699
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gradient-based optimization of neural differential equations and other parameterized dynamical systems fundamentally relies on the ability to differentiate numerical solutions with respect to model parameters. In stiff systems, it has been observed that sensitivities to parameters controlling fast-decaying modes become vanishingly small during training, leading to optimization difficulties. In this paper, we show that this vanishing gradient phenomenon is not an artifact of any particular method, but a universal feature of all A-stable and L-stable stiff numerical integration schemes. We analyze the rational stability function for general stiff integration schemes and demonstrate that the relevant parameter sensitivities, governed by the derivative of the stability function, decay to zero for large stiffness. Explicit formulas for common stiff integration schemes are provided, which illustrate the mechanism in detail. Finally, we rigorously prove that the slowest possible rate of decay for the derivative of the stability function is $O(|z|^{-1})$, revealing a fundamental limitation: all A-stable time-stepping methods inevitably suppress parameter gradients in stiff regimes, posing a significant barrier for training and parameter identification in stiff neural ODEs.
Related papers
- Implicit Neural Differential Model for Spatiotemporal Dynamics [5.1854032131971195]
We introduce Im-PiNDiff, a novel implicit physics-integrated neural differentiable solver for stabletemporal dynamics.<n>Inspired by deep equilibrium models, Im-PiNDiff advances the state using implicit fixed-point layers, enabling robust long-term simulation.<n>Im-PiNDiff achieves superior predictive performance, enhanced numerical stability, and substantial reductions in memory and cost.
arXiv Detail & Related papers (2025-04-03T04:07:18Z) - Diffusion Tempering Improves Parameter Estimation with Probabilistic Integrators for Ordinary Differential Equations [34.500484733973536]
Ordinary differential equations (ODEs) are widely used to describe dynamical systems in science, but identifying parameters that explain experimental measurements is challenging.
We propose diffusion tempering, a novel regularization technique for probabilistic numerical methods which improves convergence of gradient-based parameter optimization in ODEs.
We demonstrate that our method is effective for dynamical systems of different complexity and show that it obtains reliable parameter estimates for a Hodgkin-Huxley model with a practically relevant number of parameters.
arXiv Detail & Related papers (2024-02-19T15:36:36Z) - An optimization-based equilibrium measure describes non-equilibrium steady state dynamics: application to edge of chaos [2.5690340428649328]
Understanding neural dynamics is a central topic in machine learning, non-linear physics and neuroscience.
The dynamics is non-linear, and particularly non-gradient, i.e., the driving force can not be written as gradient of a potential.
arXiv Detail & Related papers (2024-01-18T14:25:32Z) - Closed-Form Diffeomorphic Transformations for Time Series Alignment [0.0]
We present a closed-form expression for the ODE solution and its gradient under continuous piecewise-affine velocity functions.
Results show significant improvements both in terms of efficiency and accuracy.
arXiv Detail & Related papers (2022-06-16T12:02:12Z) - Global Convergence of Over-parameterized Deep Equilibrium Models [52.65330015267245]
A deep equilibrium model (DEQ) is implicitly defined through an equilibrium point of an infinite-depth weight-tied model with an input-injection.
Instead of infinite computations, it solves an equilibrium point directly with root-finding and computes gradients with implicit differentiation.
We propose a novel probabilistic framework to overcome the technical difficulty in the non-asymptotic analysis of infinite-depth weight-tied models.
arXiv Detail & Related papers (2022-05-27T08:00:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
We build a neural message passing solver, replacing allally designed components in the graph with backprop-optimized neural function approximators.
We show that neural message passing solvers representationally contain some classical methods, such as finite differences, finite volumes, and WENO schemes.
We validate our method on various fluid-like flow problems, demonstrating fast, stable, and accurate performance across different domain topologies, equation parameters, discretizations, etc., in 1D and 2D.
arXiv Detail & Related papers (2022-02-07T17:47:46Z) - Last-Iterate Convergence of Saddle-Point Optimizers via High-Resolution
Differential Equations [83.3201889218775]
Several widely-used first-order saddle-point optimization methods yield an identical continuous-time ordinary differential equation (ODE) when derived naively.
However, the convergence properties of these methods are qualitatively different, even on simple bilinear games.
We adopt a framework studied in fluid dynamics to design differential equation models for several saddle-point optimization methods.
arXiv Detail & Related papers (2021-12-27T18:31:34Z) - Fine-Grained Analysis of Stability and Generalization for Stochastic
Gradient Descent [55.85456985750134]
We introduce a new stability measure called on-average model stability, for which we develop novel bounds controlled by the risks of SGD iterates.
This yields generalization bounds depending on the behavior of the best model, and leads to the first-ever-known fast bounds in the low-noise setting.
To our best knowledge, this gives the firstever-known stability and generalization for SGD with even non-differentiable loss functions.
arXiv Detail & Related papers (2020-06-15T06:30:19Z) - Euclideanizing Flows: Diffeomorphic Reduction for Learning Stable
Dynamical Systems [74.80320120264459]
We present an approach to learn such motions from a limited number of human demonstrations.
The complex motions are encoded as rollouts of a stable dynamical system.
The efficacy of this approach is demonstrated through validation on an established benchmark as well demonstrations collected on a real-world robotic system.
arXiv Detail & Related papers (2020-05-27T03:51:57Z) - On Learning Rates and Schr\"odinger Operators [105.32118775014015]
We present a general theoretical analysis of the effect of the learning rate.
We find that the learning rate tends to zero for a broad non- neural class functions.
arXiv Detail & Related papers (2020-04-15T09:52:37Z) - Convergence and sample complexity of gradient methods for the model-free
linear quadratic regulator problem [27.09339991866556]
We show that ODE searches for optimal control for an unknown computation system by directly searching over the corresponding space of controllers.
We take a step towards demystifying the performance and efficiency of such methods by focusing on the gradient-flow dynamics set of stabilizing feedback gains and a similar result holds for the forward disctization of the ODE.
arXiv Detail & Related papers (2019-12-26T16:56:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.