論文の概要: Dynamic Clustering for Personalized Federated Learning on Heterogeneous Edge Devices
- arxiv url: http://arxiv.org/abs/2508.01580v1
- Date: Sun, 03 Aug 2025 04:19:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.949254
- Title: Dynamic Clustering for Personalized Federated Learning on Heterogeneous Edge Devices
- Title(参考訳): 不均一エッジデバイスを用いた個人化フェデレーション学習のための動的クラスタリング
- Authors: Heting Liu, Junzhe Huang, Fang He, Guohong Cao,
- Abstract要約: フェデレートラーニング(FL)は、エッジデバイスがグローバルモデルを協調的に学習することを可能にする。
パーソナライズド・フェデレーション・ラーニング・システム(DC-PFL)のための動的クラスタリングアルゴリズムを提案する。
また,DC-PFLはトレーニング時間を大幅に短縮し,ベースラインに比べてモデルの精度が向上することを示した。
- 参考スコア(独自算出の注目度): 10.51330114955586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) enables edge devices to collaboratively learn a global model, but it may not perform well when clients have high data heterogeneity. In this paper, we propose a dynamic clustering algorithm for personalized federated learning system (DC-PFL) to address the problem of data heterogeneity. DC-PFL starts with all clients training a global model and gradually groups the clients into smaller clusters for model personalization based on their data similarities. To address the challenge of estimating data heterogeneity without exposing raw data, we introduce a discrepancy metric called model discrepancy, which approximates data heterogeneity solely based on the model weights received by the server. We demonstrate that model discrepancy is strongly and positively correlated with data heterogeneity and can serve as a reliable indicator of data heterogeneity. To determine when and how to change grouping structures, we propose an algorithm based on the rapid decrease period of the training loss curve. Moreover, we propose a layer-wise aggregation mechanism that aggregates the low-discrepancy layers at a lower frequency to reduce the amount of transmitted data and communication costs. We conduct extensive experiments on various datasets to evaluate our proposed algorithm, and our results show that DC-PFL significantly reduces total training time and improves model accuracy compared to baselines.
- Abstract(参考訳): フェデレートラーニング(FL)は、エッジデバイスが協調してグローバルモデルを学ぶことを可能にするが、クライアントが高いデータ不均一性を持つ場合には、うまく機能しない可能性がある。
本稿では,データ不均一性の問題に対処するため,パーソナライズド・フェデレーション・ラーニング・システム(DC-PFL)のための動的クラスタリングアルゴリズムを提案する。
DC-PFLは、グローバルモデルをトレーニングするすべてのクライアントから始まり、データ類似性に基づいてモデルをパーソナライズするために、徐々に小さなクラスタに分類する。
生データを公開することなくデータの不均一性を推定する課題を解決するために,サーバが受信したモデル重みのみに基づいてデータ不均一性を近似する,モデル不整合(model discrepancy)と呼ばれる不整合計量を導入する。
モデルの不一致はデータの不均一性と強く正の相関関係を持ち、データの不均一性の信頼性指標として機能することを示す。
グループ構造をいつ、どのように変更するかを決定するため、トレーニング損失曲線の急激な減少周期に基づくアルゴリズムを提案する。
さらに,低遅延層を低周波で集約し,伝送データ量と通信コストを削減する階層ワイドアグリゲーション機構を提案する。
提案したアルゴリズムを評価するために,様々なデータセットについて広範な実験を行い,本研究の結果から,DC-PFLはトレーニング時間を大幅に短縮し,ベースラインと比較してモデルの精度を向上することが示された。
関連論文リスト
- Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation [4.869042695112397]
フェデレーテッド・ラーニング(FL)は機械学習において有望なパラダイムとして登場した。
FLでは、各デバイスにまたがるローカルデータセットに基づいて、グローバルモデルを反復的にトレーニングする。
本稿では、クライアント更新に重みを動的に割り当てるために、相似性スコア、k平均クラスタリング、和解信頼スコアを利用する新しいFLフレームワーク、ClusterGuardFLを紹介する。
論文 参考訳(メタデータ) (2025-03-29T04:29:24Z) - FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors [50.131271229165165]
Federated Learning (FL)は、分散機械学習のための有望なフレームワークとして登場した。
ユーザの行動、好み、デバイス特性の相違から生じるデータの異質性は、連合学習にとって重要な課題である。
本稿では,学習過程におけるクライアントベクトルに基づくアダプティブ重み付けを適応的に調整する手法であるAdaptive Weight Aggregation (FedAWA)を提案する。
論文 参考訳(メタデータ) (2025-03-20T04:49:40Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
フェデレートラーニング(FL)は、プライバシを維持しながらモデルをトレーニングするための分散パラダイムとして登場した。
本稿では,新たなクラスタリングFL法であるFedGWC(Federated Gaussian Weighting Clustering)を提案する。
ベンチマークデータセットを用いた実験により,FedGWCはクラスタの品質と分類精度において,既存のFLアルゴリズムよりも優れていることがわかった。
論文 参考訳(メタデータ) (2025-02-05T16:33:36Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
フェデレートラーニング(FL)は、分散データセットからの知識を活用する効果に頼っている。
従来のFLメソッドでは、クライアントが前回のトレーニングラウンドからサーバが集約したグローバルモデルに基づいてローカルモデルを更新するアグリゲート-then-adaptフレームワークを採用している。
我々は,新しいアグリゲーションフリーFLアルゴリズムであるFedAFを紹介する。
論文 参考訳(メタデータ) (2024-04-29T05:55:23Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
フェデレーション学習は、ローカルデータを共有せずに、分散クライアントから機械学習モデルの共同トレーニングを可能にする。
連合学習における重要な課題の1つは、クライアントにまたがる識別できない分散データを扱うことである。
本稿では,データ問題に対処するための予測軌道正則化(FedPTR)を備えた新しいフェデレーション学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-22T02:12:08Z) - Fake It Till Make It: Federated Learning with Consensus-Oriented
Generation [52.82176415223988]
コンセンサス指向生成による連合学習(FedCOG)を提案する。
FedCOGは、補完的なデータ生成と知識蒸留に基づくモデルトレーニングという、クライアント側の2つの重要なコンポーネントで構成されています。
古典的および実世界のFLデータセットの実験は、FedCOGが一貫して最先端の手法より優れていることを示している。
論文 参考訳(メタデータ) (2023-12-10T18:49:59Z) - Contrastive encoder pre-training-based clustered federated learning for
heterogeneous data [17.580390632874046]
フェデレートラーニング(FL)は、分散クライアントがデータのプライバシを保持しながら、グローバルモデルを協調的にトレーニングすることを可能にする。
本稿では,モデル収束とFLシステム全体の性能を改善するために,CP-CFL(Contrative Pre-training-based Clustered Federated Learning)を提案する。
論文 参考訳(メタデータ) (2023-11-28T05:44:26Z) - Leveraging Foundation Models to Improve Lightweight Clients in Federated
Learning [16.684749528240587]
Federated Learning(FL)は、世界中に散在するクライアントが機密データを漏らさずにグローバルモデルを共同で学習することを可能にする、分散トレーニングパラダイムである。
FLは、クライアント間での不均一なデータ分散という形で大きな課題に直面しており、パフォーマンスとロバスト性は低下している。
本稿では,軽量クライアントモデルの連合訓練を支援し,推論コストを低く抑えつつ,不均一なデータ設定下での性能を向上させる基礎モデル蒸留について紹介する。
論文 参考訳(メタデータ) (2023-11-14T19:10:56Z) - Towards Understanding and Mitigating Dimensional Collapse in Heterogeneous Federated Learning [112.69497636932955]
フェデレートラーニングは、プライバシを考慮したデータ共有を必要とせずに、さまざまなクライアントでモデルをトレーニングすることを目的としている。
本研究では,データの不均一性がグローバル集約モデルの表現に与える影響について検討する。
フェデレーション学習における次元的崩壊を効果的に緩和する新しい手法である sc FedDecorr を提案する。
論文 参考訳(メタデータ) (2022-10-01T09:04:17Z) - Gradient Masked Averaging for Federated Learning [24.687254139644736]
フェデレートラーニングは、統一グローバルモデルの学習を協調するために、異種データを持つ多数のクライアントを可能にする。
標準FLアルゴリズムは、サーバのグローバルモデルを近似するために、モデルパラメータや勾配の更新を平均化する。
本稿では,クライアント更新の標準平均化の代替として,FLの勾配マスク平均化手法を提案する。
論文 参考訳(メタデータ) (2022-01-28T08:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。