論文の概要: Diffusion Models for Future Networks and Communications: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2508.01586v1
- Date: Sun, 03 Aug 2025 04:59:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:21.953473
- Title: Diffusion Models for Future Networks and Communications: A Comprehensive Survey
- Title(参考訳): 未来のネットワークとコミュニケーションのための拡散モデル:包括的調査
- Authors: Nguyen Cong Luong, Nguyen Duc Hai, Duc Van Le, Huy T. Nguyen, Thai-Hoc Vu, Thien Huynh-The, Ruichen Zhang, Nguyen Duc Duy Anh, Dusit Niyato, Marco Di Renzo, Dong In Kim, Quoc-Viet Pham,
- Abstract要約: 近年のGenerative AI(GenAI)の台頭は、無線通信やネットワークの変革的進歩を触媒している。
GenAIファミリーの中では、拡散モデル(DM)が強力な選択肢として注目されている。
我々は,将来の通信システムにおけるDMの理論的基礎と実践的応用の包括的概要を提供する。
- 参考スコア(独自算出の注目度): 65.97057929688499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rise of Generative AI (GenAI) in recent years has catalyzed transformative advances in wireless communications and networks. Among the members of the GenAI family, Diffusion Models (DMs) have risen to prominence as a powerful option, capable of handling complex, high-dimensional data distribution, as well as consistent, noise-robust performance. In this survey, we aim to provide a comprehensive overview of the theoretical foundations and practical applications of DMs across future communication systems. We first provide an extensive tutorial of DMs and demonstrate how they can be applied to enhance optimizers, reinforcement learning and incentive mechanisms, which are popular approaches for problems in wireless networks. Then, we review and discuss the DM-based methods proposed for emerging issues in future networks and communications, including channel modeling and estimation, signal detection and data reconstruction, integrated sensing and communication, resource management in edge computing networks, semantic communications and other notable issues. We conclude the survey with highlighting technical limitations of DMs and their applications, as well as discussing future research directions.
- Abstract(参考訳): 近年のGenerative AI(GenAI)の台頭は、無線通信やネットワークの変革的進歩を触媒している。
GenAIファミリーのメンバーのうち、拡散モデル(DM)は、複雑な高次元データ分散を処理し、一貫したノイズロス性能を処理できる強力な選択肢として注目されている。
本稿では,将来の通信システムにおけるDMの理論的基礎と実用化について概観する。
まず、DMの広範なチュートリアルを提供し、無線ネットワークにおける問題に対する一般的なアプローチである最適化、強化学習、インセンティブメカニズムの強化にどのように適用できるかを実証する。
そこで我々は,将来のネットワークや通信において,チャネルモデリングと推定,信号検出とデータ再構成,統合されたセンシングと通信,エッジコンピューティングネットワークにおけるリソース管理,セマンティック通信など,DMベースの手法を提案する。
本調査は,DMとその応用の技術的限界を強調した上で,今後の研究方向性について論じる。
関連論文リスト
- Anomaly Detection and Generation with Diffusion Models: A Survey [51.61574868316922]
異常検出(AD)は、サイバーセキュリティ、金融、医療、工業製造など、さまざまな分野において重要な役割を担っている。
近年のディープラーニング,特に拡散モデル(DM)の進歩は,大きな関心を集めている。
この調査は、研究者や実践者が様々なアプリケーションにまたがる革新的なADソリューションにDMを利用することをガイドすることを目的としている。
論文 参考訳(メタデータ) (2025-06-11T03:29:18Z) - From Large AI Models to Agentic AI: A Tutorial on Future Intelligent Communications [57.38526350775472]
このチュートリアルは、大規模人工知能モデル(LAM)とエージェントAI技術の原則、設計、応用に関する体系的な紹介を提供する。
我々は,6G通信の背景を概説し,LAMからエージェントAIへの技術的進化を概説し,チュートリアルのモチベーションと主な貢献を明らかにする。
論文 参考訳(メタデータ) (2025-05-28T12:54:07Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AIは、インテリジェントなコミュニケーションとネットワークのための重要なパラダイムとして登場した。
本稿では,通信システムにおけるエージェントAIにおける知識獲得,処理,検索の役割を強調する。
論文 参考訳(メタデータ) (2025-02-24T06:02:25Z) - GDM4MMIMO: Generative Diffusion Models for Massive MIMO Communications [61.56610953012228]
生成拡散モデル (generative diffusion model, GDM) は、生成モデルの最先端のファミリーの一つである。
GDMは、暗黙の事前知識と堅牢な一般化能力を学ぶ能力を示す。
ケーススタディは、GDMが有望な、効率的な超次元チャネルステートメント情報取得を促進する可能性を示唆している。
論文 参考訳(メタデータ) (2024-12-24T08:42:01Z) - A Survey on Large Language Models for Communication, Network, and Service Management: Application Insights, Challenges, and Future Directions [37.427638898804055]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおける非並列性のため、大きな注目を集めている。
本研究では,モバイルネットワークや関連技術,車両ネットワーク,クラウドネットワーク,フォグ/エッジネットワークなど,さまざまな通信ネットワークドメインを対象としたLCMの統合について検討する。
論文 参考訳(メタデータ) (2024-12-16T20:01:36Z) - AI Flow at the Network Edge [58.31090055138711]
AI Flowは、デバイス、エッジノード、クラウドサーバ間で利用可能な異種リソースを共同で活用することで、推論プロセスを合理化するフレームワークである。
この記事では、AI Flowのモチベーション、課題、原則を特定するためのポジションペーパーとして機能する。
論文 参考訳(メタデータ) (2024-11-19T12:51:17Z) - Multi-Agent Reinforcement Learning for Power Control in Wireless
Networks via Adaptive Graphs [1.1861167902268832]
多エージェント深部強化学習(MADRL)は、電力制御のような幅広い複雑な最適化問題に対処するための有望な手法として登場した。
本稿では,これらの課題を緩和する有効な手段として,分散エージェント間の通信誘導構造としてグラフを用いることを提案する。
論文 参考訳(メタデータ) (2023-11-27T14:25:40Z) - Distributed Machine Learning for Wireless Communication Networks:
Techniques, Architectures, and Applications [1.647426214278143]
分散機械学習(DML)技術は、無線通信にますます応用されている。
大規模、地理的に分散したデプロイメント、ユーザモビリティ、大量のデータなど、無線システムのユニークな特徴は、DML技術の設計に新たな課題をもたらす。
この調査は、無線ネットワークに焦点をあてた、現代的で包括的なDML技術の調査を提供することによって、ギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-12-02T19:53:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。