BeDKD: Backdoor Defense based on Dynamic Knowledge Distillation and Directional Mapping Modulator
- URL: http://arxiv.org/abs/2508.01595v1
- Date: Sun, 03 Aug 2025 05:28:01 GMT
- Title: BeDKD: Backdoor Defense based on Dynamic Knowledge Distillation and Directional Mapping Modulator
- Authors: Zhengxian Wu, Juan Wen, Wanli Peng, Yinghan Zhou, Changtong dou, Yiming Xue,
- Abstract summary: We propose a novel Backdoor defense method based on Directional mapping module and adversarial Knowledge Distillation (BeDKD)<n>BeDKD surpasses the state-of-the-art defenses and reduces the ASR by 98% without significantly reducing the CACC.
- Score: 9.581510737256389
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although existing backdoor defenses have gained success in mitigating backdoor attacks, they still face substantial challenges. In particular, most of them rely on large amounts of clean data to weaken the backdoor mapping but generally struggle with residual trigger effects, resulting in persistently high attack success rates (ASR). Therefore, in this paper, we propose a novel Backdoor defense method based on Directional mapping module and adversarial Knowledge Distillation (BeDKD), which balances the trade-off between defense effectiveness and model performance using a small amount of clean and poisoned data. We first introduce a directional mapping module to identify poisoned data, which destroys clean mapping while keeping backdoor mapping on a small set of flipped clean data. Then, the adversarial knowledge distillation is designed to reinforce clean mapping and suppress backdoor mapping through a cycle iteration mechanism between trust and punish distillations using clean and identified poisoned data. We conduct experiments to mitigate mainstream attacks on three datasets, and experimental results demonstrate that BeDKD surpasses the state-of-the-art defenses and reduces the ASR by 98% without significantly reducing the CACC. Our code are available in https://github.com/CAU-ISS-Lab/Backdoor-Attack-Defense-LLMs/tree/main/BeDKD.
Related papers
- CLIP-Guided Backdoor Defense through Entropy-Based Poisoned Dataset Separation [10.162187097557576]
Deep Neural Networks (DNNs) are susceptible to backdoor attacks, where adversaries poison training data to implant backdoor into victim model.<n>Current backdoor defenses on poisoned data often suffer from high computational costs or low effectiveness against advanced attacks like clean-label and clean-image backdoors.<n>We introduce CLIP-Guided backdoor Defense (CGD), an efficient and effective method that mitigates various backdoor attacks.
arXiv Detail & Related papers (2025-07-07T15:29:26Z) - Data Free Backdoor Attacks [83.10379074100453]
DFBA is a retraining-free and data-free backdoor attack without changing the model architecture.<n>We verify that our injected backdoor is provably undetectable and unchosen by various state-of-the-art defenses.<n>Our evaluation on multiple datasets demonstrates that our injected backdoor: 1) incurs negligible classification loss, 2) achieves 100% attack success rates, and 3) bypasses six existing state-of-the-art defenses.
arXiv Detail & Related papers (2024-12-09T05:30:25Z) - DMGNN: Detecting and Mitigating Backdoor Attacks in Graph Neural Networks [30.766013737094532]
We propose DMGNN against out-of-distribution (OOD) and in-distribution (ID) graph backdoor attacks.
DMGNN can easily identify the hidden ID and OOD triggers via predicting label transitions based on counterfactual explanation.
DMGNN far outperforms the state-of-the-art (SOTA) defense methods, reducing the attack success rate to 5% with almost negligible degradation in model performance.
arXiv Detail & Related papers (2024-10-18T01:08:03Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Mitigating Backdoor Attack by Injecting Proactive Defensive Backdoor [63.84477483795964]
Data-poisoning backdoor attacks are serious security threats to machine learning models.
In this paper, we focus on in-training backdoor defense, aiming to train a clean model even when the dataset may be potentially poisoned.
We propose a novel defense approach called PDB (Proactive Defensive Backdoor)
arXiv Detail & Related papers (2024-05-25T07:52:26Z) - Elijah: Eliminating Backdoors Injected in Diffusion Models via
Distribution Shift [86.92048184556936]
We propose the first backdoor detection and removal framework for DMs.
We evaluate our framework Elijah on hundreds of DMs of 3 types including DDPM, NCSN and LDM.
Our approach can have close to 100% detection accuracy and reduce the backdoor effects to close to zero without significantly sacrificing the model utility.
arXiv Detail & Related papers (2023-11-27T23:58:56Z) - Beating Backdoor Attack at Its Own Game [10.106197319676294]
Deep neural networks (DNNs) are vulnerable to backdoor attack.<n>Existing defense methods have greatly reduced attack success rate.<n>We propose a highly effective framework which injects non-adversarial backdoors targeting poisoned samples.
arXiv Detail & Related papers (2023-07-28T13:07:42Z) - INK: Inheritable Natural Backdoor Attack Against Model Distillation [8.937026844871074]
We introduce INK, an inheritable natural backdoor attack that targets model distillation.
INK employs image variance as a backdoor trigger and enables both clean-image and clean-label attacks.
For instance, INK maintains an attack success rate of over 98% post-distillation, compared to an average success rate of 1.4% for existing methods.
arXiv Detail & Related papers (2023-04-21T14:35:47Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Black-box Detection of Backdoor Attacks with Limited Information and
Data [56.0735480850555]
We propose a black-box backdoor detection (B3D) method to identify backdoor attacks with only query access to the model.
In addition to backdoor detection, we also propose a simple strategy for reliable predictions using the identified backdoored models.
arXiv Detail & Related papers (2021-03-24T12:06:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.