DUP: Detection-guided Unlearning for Backdoor Purification in Language Models
- URL: http://arxiv.org/abs/2508.01647v1
- Date: Sun, 03 Aug 2025 08:12:21 GMT
- Title: DUP: Detection-guided Unlearning for Backdoor Purification in Language Models
- Authors: Man Hu, Yahui Ding, Yatao Yang, Liangyu Chen, Yanhao Jia, Shuai Zhao,
- Abstract summary: DUP (Detection-guided Unlearning for Purification) is a framework that integrates backdoor detection with unlearning-based purification.<n>Based on the detection results, we purify the model through a parameter-efficient unlearning mechanism.<n>Our code is available at https://github.com/ManHu2025/DUP.
- Score: 6.726081307488787
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As backdoor attacks become more stealthy and robust, they reveal critical weaknesses in current defense strategies: detection methods often rely on coarse-grained feature statistics, and purification methods typically require full retraining or additional clean models. To address these challenges, we propose DUP (Detection-guided Unlearning for Purification), a unified framework that integrates backdoor detection with unlearning-based purification. The detector captures feature-level anomalies by jointly leveraging class-agnostic distances and inter-layer transitions. These deviations are integrated through a weighted scheme to identify poisoned inputs, enabling more fine-grained analysis. Based on the detection results, we purify the model through a parameter-efficient unlearning mechanism that avoids full retraining and does not require any external clean model. Specifically, we innovatively repurpose knowledge distillation to guide the student model toward increasing its output divergence from the teacher on detected poisoned samples, effectively forcing it to unlearn the backdoor behavior. Extensive experiments across diverse attack methods and language model architectures demonstrate that DUP achieves superior defense performance in detection accuracy and purification efficacy. Our code is available at https://github.com/ManHu2025/DUP.
Related papers
- BURN: Backdoor Unlearning via Adversarial Boundary Analysis [73.14147934175604]
Backdoor unlearning aims to remove backdoor-related information while preserving the model's original functionality.<n>We propose Backdoor Unlearning via adversaRial bouNdary analysis (BURN), a novel defense framework that integrates false correlation decoupling, progressive data refinement, and model purification.
arXiv Detail & Related papers (2025-07-14T17:13:06Z) - Lie Detector: Unified Backdoor Detection via Cross-Examination Framework [68.45399098884364]
We propose a unified backdoor detection framework in the semi-honest setting.<n>Our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines.<n> Notably, it is the first to effectively detect backdoors in multimodal large language models.
arXiv Detail & Related papers (2025-03-21T06:12:06Z) - Proactive Adversarial Defense: Harnessing Prompt Tuning in Vision-Language Models to Detect Unseen Backdoored Images [0.0]
Backdoor attacks pose a critical threat by embedding hidden triggers into inputs, causing models to misclassify them into target labels.<n>We introduce a groundbreaking method to detect unseen backdoored images during both training and inference.<n>Our approach trains learnable text prompts to differentiate clean images from those with hidden backdoor triggers.
arXiv Detail & Related papers (2024-12-11T19:54:14Z) - Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense [27.471096446155933]
We investigate the Post-Purification Robustness of current backdoor purification methods.
We find that current safety purification methods are vulnerable to the rapid re-learning of backdoor behavior.
We propose a tuning defense, Path-Aware Minimization (PAM), which promotes deviation along backdoor-connected paths with extra model updates.
arXiv Detail & Related papers (2024-10-13T13:37:36Z) - Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Lazy Layers to Make Fine-Tuned Diffusion Models More Traceable [70.77600345240867]
A novel arbitrary-in-arbitrary-out (AIAO) strategy makes watermarks resilient to fine-tuning-based removal.
Unlike the existing methods of designing a backdoor for the input/output space of diffusion models, in our method, we propose to embed the backdoor into the feature space of sampled subpaths.
Our empirical studies on the MS-COCO, AFHQ, LSUN, CUB-200, and DreamBooth datasets confirm the robustness of AIAO.
arXiv Detail & Related papers (2024-05-01T12:03:39Z) - UFID: A Unified Framework for Input-level Backdoor Detection on Diffusion Models [19.46962670935554]
Diffusion models are vulnerable to backdoor attacks.<n>We propose a black-box input-level backdoor detection framework on diffusion models, called UFID.<n>Our method achieves superb performance on detection effectiveness and run-time efficiency.
arXiv Detail & Related papers (2024-04-01T13:21:05Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - Leveraging Diffusion-Based Image Variations for Robust Training on
Poisoned Data [26.551317580666353]
Backdoor attacks pose a serious security threat for training neural networks.
We propose a novel approach that enables model training on potentially poisoned datasets by utilizing the power of recent diffusion models.
arXiv Detail & Related papers (2023-10-10T07:25:06Z) - Backdoor Learning Curves: Explaining Backdoor Poisoning Beyond Influence Functions [23.750285504961337]
We study the process of backdoor learning under the lens of incremental learning and influence functions.<n>We show that the effectiveness of backdoor attacks depends on: (i) the complexity of the learning algorithm; (ii) the fraction of backdoor samples injected into the training set; and (iii) the size and visibility of the backdoor trigger.
arXiv Detail & Related papers (2021-06-14T08:00:48Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.