Parametric pair production of collective excitations in a Bose-Einstein condensate
- URL: http://arxiv.org/abs/2508.01654v1
- Date: Sun, 03 Aug 2025 08:26:08 GMT
- Title: Parametric pair production of collective excitations in a Bose-Einstein condensate
- Authors: Victor Gondret, Rui Dias, Clothilde Lamirault, Léa Camier, Amaury Micheli, Charlie Leprince, Quentin Marolleau, Scott Robertson, Denis Boiron, Christoph I. Westbrook,
- Abstract summary: We produce longitudinal collective excitations in a pairwise manner in a Bose-Einstein condensate.<n>This process can be seen as an analog to cosmological particle production.<n>We discuss the presence of oscillations in the atom number, which are due to pair correlations and to the rate at which interactions are switched off.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: By exciting the transverse breathing mode of an elongated Bose-Einstein condensate, we parametrically produce longitudinal collective excitations in a pairwise manner. This process also referred to as Faraday wave generation, can be seen as an analog to cosmological particle production. Building upon single particle detection, we investigate the early time dynamics of the exponential growth and compare our observation with a Bogoliubov description. The growth rate we observe experimentally is in very good agreement with theoretical predictions, demonstrating the validity of the Bogoliubov description and thereby confirming the smallness of quasiparticle interactions in such an elongated gas. We also discuss the presence of oscillations in the atom number, which are due to pair correlations and to the rate at which interactions are switched off.
Related papers
- Observation of entanglement in a cold atom analog of cosmological preheating [0.0]
We observe entanglement between collective excitations of a Bose-Einstein condensate in a configuration analogous to particle production.<n>In our setup, the oscillation of the inflaton field is mimicked by the transverse breathing mode of a cigar-shaped condensate.<n>We observe entanglement of these pairs which demonstrates that vacuum fluctuations seeded the parametric growth, confirming the quantum origin of the excitations.
arXiv Detail & Related papers (2025-06-27T08:46:06Z) - Entanglement cones and horizons in analogue cosmological production of Dirac fermions [49.1574468325115]
We study the appearance of fermion condensates for self-interacting Dirac fermions.<n>We show that the combined breakdown of time-reversal symmetry due to the expanding spacetime, and parity due to a pseudo-scalar condensate, manifest through the structure of the light-cone-like propagation of entanglement in this analogue cQFT.
arXiv Detail & Related papers (2025-03-24T22:20:16Z) - Non-Markovian Collective Emission of Giant emitters in the Zeno Regime [0.0]
We explore the collective Zeno dynamics of giant artificial atoms that are coupled, via multiple coupling points, to a common photonic or acoustic reservoir.
We reveal that giant atoms build up their collective emission smoothly from the decay rate of zero to that predicted by Markovian approximation.
Our results might be probed in state-of-art waveguide QED experiments, and fundamentally broaden the fields of collective emission in systems with giant atoms.
arXiv Detail & Related papers (2024-06-21T01:22:40Z) - Fragmented superconductivity in the Hubbard model as solitons in Ginzburg-Landau theory [39.58317527488534]
Superconductivity and charge density waves are observed in close vicinity in strongly correlated materials.
We investigate the nature of such an intertwined state of matter stabilized in the phase diagram of the elementary $t$-$tprime$-$U$ Hubbard model.
We provide conclusive evidence that the macroscopic wave functions of the superconducting fragments are well-described by soliton solutions of a Ginzburg-Landau equation.
arXiv Detail & Related papers (2023-07-21T18:00:07Z) - Higher-order topological Peierls insulator in a two-dimensional
atom-cavity system [58.720142291102135]
We show how photon-mediated interactions give rise to a plaquette-ordered bond pattern in the atomic ground state.
The pattern opens a non-trivial topological gap in 2D, resulting in a higher-order topological phase hosting corner states.
Our work shows how atomic quantum simulators can be harnessed to investigate novel strongly-correlated topological phenomena.
arXiv Detail & Related papers (2023-05-05T10:25:14Z) - Spin- and Momentum-Correlated Atom Pairs Mediated by Photon Exchange and
Seeded by Vacuum Fluctuations [0.0]
We experimentally demonstrate a mechanism for generating pairs of atoms in well-defined spin and momentum modes.
We observe a collectively enhanced production of pairs and probe interspin correlations in momentum space.
Our results offer promising prospects for quantum-enhanced interferometry and quantum simulation experiments.
arXiv Detail & Related papers (2023-03-20T17:59:03Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Lieb-Robinson bounds and growth of correlations in Bose mixtures [77.34726150561087]
For a mixture of interacting Bose gases initially prepared in a regime of condensation (uncorrelation) it is proved that in the course of the time evolution observables of disjoint sets of particles of each species have correlation functions that remainally small in the total number of particles and display a controlled growth in time.
arXiv Detail & Related papers (2021-10-30T19:23:42Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Phase and group velocities for correlation spreading in the Mott phase
of the Bose-Hubbard model in dimensions greater than one [0.0]
Lieb-Robinson and related bounds set an upper limit on the rate of spreading of information in non-relativistic quantum systems.
We use a recently developed two particle irreducible (2PI) strong coupling approach to out-of-equilibrium dynamics in the Bose-Hubbard model.
Our results establish the 2PI strong coupling approach as a powerful tool to study out-of-equilibrium dynamics in the Bose-Hubbard model in dimensions greater than one.
arXiv Detail & Related papers (2020-07-31T18:01:12Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.